



Synthesis guide for cross-country

movement

movement

Alexander R. Pearson

Janet S. Wright

ETL-0220

FEBRUARY 1980



ORIGINAL CONTAINS COLOR PLATES: ALL DOGY REPRODUCTIONS WILL BE IN BLACK AND WHITE

U.S. ARMY CORPS OF ENGINEERS ENGINEER TOPOGRAPHIC LABORATORIES FORT BELVOIR, VIRGINIA 22060

APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED

5



Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The citation in this report of trade names of commercially available products does not constitute official endorsement or approval of the use of such products.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

|          | REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                  | READ INSTRUCTIONS BEFORE COMPLETING FORM                       |  |  |  |  |  |  |  |  |  |  |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
|          | ETL-8226 AN-ANSY DOT                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3. RECIPIENT'S CATALOG NUMBER                                  |  |  |  |  |  |  |  |  |  |  |  |  |
|          | e. TITLE (and Subtitio)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S. MADE OF REPORT & PERIOD COVERED                             |  |  |  |  |  |  |  |  |  |  |  |  |
| _ 6      | SYNTHESIS GUIDE FOR CROSS-COUNTRY MOVEMENT.                                                                                                                                                                                                                                                                                                                                                                                                                                | Technical Report * 5                                           |  |  |  |  |  |  |  |  |  |  |  |  |
| Maken    | Report 1 4 in the ETL series on Guides for Army Terrain Analysts                                                                                                                                                                                                                                                                                                                                                                                                           | 6. PERFORMING ORG. REPORT NUMBER                               |  |  |  |  |  |  |  |  |  |  |  |  |
| <u>4</u> | Alexander R./Pearson                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8. CONTRACT OR GRANT NUMBER(s)                                 |  |  |  |  |  |  |  |  |  |  |  |  |
| 74       | Janet S. Wright                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |  |  |  |  |  |  |  |  |  |  |  |  |
|          | 9. PERFORMING ORGANIZATION NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS |  |  |  |  |  |  |  |  |  |  |  |  |
|          | U.S. Army Engineer Topographic Laboratories Fort Belvoir, Virginia 22060                                                                                                                                                                                                                                                                                                                                                                                                   | 4A7627Ø7A855                                                   |  |  |  |  |  |  |  |  |  |  |  |  |
|          | 11. CONTROLLING OFFICE NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                    | February 2980                                                  |  |  |  |  |  |  |  |  |  |  |  |  |
|          | U.S. Army Engineer Topographic Laboratories Fort Belvoir, Virginia 22060                                                                                                                                                                                                                                                                                                                                                                                                   | 13. NUMBER OF PAGES                                            |  |  |  |  |  |  |  |  |  |  |  |  |
|          | 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)                                                                                                                                                                                                                                                                                                                                                                                                 | Unclassified                                                   |  |  |  |  |  |  |  |  |  |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 154. DECLASSIFICATION/DOWNGRADING<br>\$CHEDULE                 |  |  |  |  |  |  |  |  |  |  |  |  |
|          | 16. DISTRIBUTION STATEMENT (of this Report)                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |  |  |  |  |  |  |  |  |  |  |  |  |
|          | Approved for public release; distribution unlimited.                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |  |  |  |  |  |  |  |  |  |  |  |  |
|          | 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |  |  |  |  |  |  |  |  |  |  |  |  |
|          | 18. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                    | }                                                              |  |  |  |  |  |  |  |  |  |  |  |  |
|          | ORIGINAL CONTAINS COLOR PLATES REPRODUCTIONS WILL BE IN BLACK                                                                                                                                                                                                                                                                                                                                                                                                              | S: ALL DDC.                                                    |  |  |  |  |  |  |  |  |  |  |  |  |
|          | 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br>Trafficability<br>Vehicle Mobility<br>Off-Road Mobility<br>Cross-Country Movement                                                                                                                                                                                                                                                                                                    |                                                                |  |  |  |  |  |  |  |  |  |  |  |  |
| }        | 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |  |  |  |  |  |  |  |  |  |  |  |  |
|          | This report provides step-by-step instructions for compiling a cross-country movement map from previously prepared factor overlays. The information on the factor overlays is combined, or synthesized, manually with or without the aid of a simple mathematical model. Three synthesis methods are given: (1) using a mathematical model; (2) using a mathematical model with a programable calculator (HP-97), and (3) using a qualitative, non-mathematical procedure. |                                                                |  |  |  |  |  |  |  |  |  |  |  |  |
| •        | DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNC                                                                                                                                                                                                                                                                                                                                                                                                                       | LASSIFIED                                                      |  |  |  |  |  |  |  |  |  |  |  |  |
|          | SECURITY CLA                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SSIFICATION OF THIS PAGE (When Data Entered)                   |  |  |  |  |  |  |  |  |  |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |  |  |  |  |  |  |  |  |  |  |  |  |

| SECURITY CLASSIFICATION OF THIS PAGE(Who                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n Data Enteted) | <br> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 1    |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | }    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | ţ    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | }    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | j    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | }    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Ì    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 1    |
| <b>\</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | }    |
| · Company of the comp |                 | }    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | }    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | i    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 1    |
| }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 1    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |      |
| }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | - 1  |
| }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | İ    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | [    |
| Ī                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | ŀ    |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 1    |
| }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | }    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 1    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | j    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 1    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | j    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | }    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | }    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . •             | 1    |

#### Preface

This guide for cross-country movement (CCM), is one in a series of Analysis and Synthesis Guides to be produced. It is anticipated that after some modification to format and content these guides will be published as Department of Defense Technical Manuals. In this regard, critical comments and suggestions are requested by the authors.

The authors gratefully acknowledge the technical assistance of Messrs. A.D. Hastings, A.H. Reimer, and H.F. Barnett, Terrain Analysis Center U.S. Army Engineer Topographic Laboratories (ETL) in the development of the CCM synthesis procedures, and of Messrs. R.J. Orsinger and K.O. Kurtz Geographic Sciences Laboratory, ETL, in the design of the calculator program.

This study was conducted under DA Project 4A762707A855, Task C, Work Unit 11, 'Military Geographic Analysis Technology.'

This study was done under the supervision of A.C. Elser, Chief, MGI Data Processing and Products Division and K.T. Yoritomo, Director, Geographic Sciences Laboratory.

COL Daniel L. Lycan, CE was the Commander and Director and Mr. Robert P. Macchia was Technical Director of the Engineer Topographic Laboratories during the report preparation.



## TABLE OF CONTENTS

|      |                                                                                                                                                                                                                                                                                                                                                                                                         | PAGE    |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| I.   | Introduction                                                                                                                                                                                                                                                                                                                                                                                            | 6       |
| II.  | I. Mathematical Model and Synthesis Procedures - Computed Without a Programable Calculator  A. Introduction  B. Procedures for Factor Calculation C. Procedures for Constructing the Complex Overlay D. Procedures for Computing Speeds  II. Mathematical Model Approach Using Programable Calculator (HP-97)  A. Introduction B. Procedures  V. Qualitative Method - No-Model Approach A. Introduction | 8       |
|      | A. Introduction                                                                                                                                                                                                                                                                                                                                                                                         | 8       |
|      | B. Procedures for Factor Calculation                                                                                                                                                                                                                                                                                                                                                                    | 11      |
|      | C. Procedures for Constructing the Complex Ove                                                                                                                                                                                                                                                                                                                                                          | rlay 33 |
|      | D. Procedures for Computing Speeds                                                                                                                                                                                                                                                                                                                                                                      | 47      |
| III. |                                                                                                                                                                                                                                                                                                                                                                                                         | 54      |
|      | A. Introduction                                                                                                                                                                                                                                                                                                                                                                                         | 54      |
|      | B. Procedures                                                                                                                                                                                                                                                                                                                                                                                           | 57      |
| IV.  | Qualitative Method - No-Model Approach                                                                                                                                                                                                                                                                                                                                                                  | 85      |
|      | A. Introduction                                                                                                                                                                                                                                                                                                                                                                                         | 85      |
|      | B. Procedures                                                                                                                                                                                                                                                                                                                                                                                           | 86      |
| ٧.   | Appendix Forms                                                                                                                                                                                                                                                                                                                                                                                          | 96      |

## Illustrations

|    |                                                                                                               | PAG  | E  |
|----|---------------------------------------------------------------------------------------------------------------|------|----|
| 1  | The Cross-Country Movement Mathematical Model                                                                 | 8    |    |
| ·  |                                                                                                               |      |    |
| 2  | Sample Slope Factor Overlay                                                                                   | 12   |    |
| 3  | Sample Vegetation Data Table 1                                                                                | 15   |    |
| 4  | Sample Surface Roughness Factor Overlay                                                                       | 20   |    |
| 5  | Sample Soil Data Table                                                                                        | 22 & | 23 |
| 6  | Sample Watercourses and Water Bodies Data Table 1                                                             | 27 & | 28 |
| 7  | Sample Watercourses and Water Bodies Data Table 2                                                             | 29 & | 30 |
| 8  | Bank Conditions Analysis                                                                                      | 26   |    |
| 9  | Sample Complex Overlay with Built-Up Areas Added                                                              | 34   |    |
| 10 | Sample Vegetation Factor Overlay                                                                              | 35   |    |
| 17 | Sample Complex Overlay with Built-Up Areas and Vegetation Added                                               | d 37 |    |
| 12 | Sample Watercourses and Water Bodies Factor Overlay                                                           | 38   |    |
| 13 | Sample Complex Overlay with Built-Up Areas, Vegetation and Watercourses Added                                 | 39   |    |
| 14 | Sample Complex Overlay with Built-Up Areas, Vegetation, Watercourses, and Surface Roughness Added             | 40   |    |
| 15 | Sample Complex Overlay with Built-Up Areas, Vegetation, Watercourses, Surface Roughness, and Slope Added      | 42   |    |
| 16 | Sample Soil Factor Overlay                                                                                    | 43   |    |
| 17 | Sample Complex Overlay with Built-Up Areas, Vegetation, Watercourses, Surface Roughness, Slope and Soil Added | 44   |    |
| 18 | Sample Completed Complex Overlay with Area Numbers Added                                                      | 45   |    |
| 19 | Sample Completed CCM Manuscript                                                                               | 53   |    |
| 20 | CCM Program Card for the XM-1 and M-60 Tanks                                                                  | 60   |    |

| 21 | HP-97 Calculator                              | 60 |
|----|-----------------------------------------------|----|
| 22 | Inserting Program Card into Card Reader Slot  | 6  |
| 23 | Inserting Program Card into Window Slot       | 6  |
| 24 | Specific Vehicles Printed on the Program Card | 6  |

# TABLES

|    |                                                                                            | F  | PAGE |
|----|--------------------------------------------------------------------------------------------|----|------|
| 1  | Sample Slope Factor Table (S <sub>1</sub> ) for M-60 Tank                                  |    | 13   |
| 2  | Sample Vegetation Factor Table $(F_1/F_2)$ for M-60 Tank                                   |    | 16   |
| 3  | Sample Surface Roughness Factor ( $F_{3T}/F_{3W}$ ) Table for Tracked and Wheeled Vehicles |    | 21   |
| 4  | Sample Soil Factor Table $(F_{4D}/F_{4W})$ for M-60 Tank                                   |    | 24   |
| 5  | Sample Movement Analysis of Drainage Features for M-60 Tanks                               | 31 | & 32 |
| 6  | Speed Prediction Tabulation Sheet #1                                                       |    | 48   |
| 7  | Categories for Speeds and CCM Map Units                                                    |    | 50   |
| 8  | Sample Speed Predition Tabulation Sheet #2 for M-60 Tank                                   |    | 58   |
| 9  | Vehicle Performance Characteristics                                                        |    | 90   |
| 10 | Precalculated S <sub>1</sub> for Selected Vehicles (kph)                                   |    | 91   |
| 11 | Approximate RCI Values for Wet and Dry Seasons                                             |    | 92   |
| 12 | Glossary of Symbols and Terms                                                              |    | 93   |
| 13 | Qualitative Thresholds for CCM                                                             |    | 94   |
| 14 | Calculator Program Flow Chart                                                              |    | 95   |

#### I. INTRODUCTION

Cross-country movement maps enable commanders to judge the relative ease of off-road movement for foot troops and vehicles. Off-road movement can be easy or difficult, depending on several terrain factors and on the ability of troops or vehicles to cope with certain terrain factors. The terrain factors include vegetation, slope, drainage, surface roughness, built-up areas, and soil. These factors are mapped on terrain factor overlays. The cross-country movement (CCM) map shows the combination of these factors and prediction of their combined effects on the movement of men \* and machines. This combining of factors and their effects is called synthesizing. The CCM map is, then, a synthesis of terrain factor overlays.

This synthesis guide shows three methods of combining specific terrain factor overlays and using their legends and tables to determine speed categories for specific vehicles. Two methods use a simple mathematical model to determine speed categories. The third method uses a qualitative approach to determine movement categories. These methods enable the production of one CCM map for each type of vehicle concerned; i.e. one CCM map will not provide movement data for more than one type of vehicle. \*\*
If movement data for more than one vehicle is required, more than one CCM map will be required.

The synthesis process means taking specific factor overlays out of the data base, placing a sheet of frosted mylar on the overlays one at a time, and tracing all the map unit boundaries on the different overlays onto the single sheet of mylar. This sheet of mylar, called the Complex Overlay, will become the base from which the CCM map will be made. With the math model, speed values for the combined factors on the Complex Overlay can be found. With the qualitative method, general speed categories for the combined factors on the Complex Overlay can be created without using a mathematical model.

The following diagram shows the basic steps in the general synthesis process for CCM:

Cross-country movement for foot troops is not treated in this guide.

<sup>\*\*</sup> In some instances, the map can present data for more than one vehicle, but the computations must be done separately for each vehicle and also for each season.

## **Synthesis Process**



### II. MATHEMATICAL MODEL AND SYNTHESIS PROCEDURES - COMPUTED WITHOUT A

#### PROGRAMABLE CALCULATOR

#### A. Introduction.

The mathematical model used in this guide \* enables the analyst to assign an expected maximum vehicle speed to specific terrain. The model is a sequence of simple equations that take the maximum vehicle speed for an unobstructed flat surface and reduce that speed by calculated factors representing terrain elements that would prevent a vehicle from achieving its maximum speed (figure 1). These calculated factors reflect the slowing effect of certain slopes, vegetation, soil, surface roughness, and watercourses.

$$S_1 = M - \frac{(S)(M)}{G}$$

$$S_1 = \text{speed after slope effect (kph)}$$

$$M = \text{vehicle maximum speed (kph)}$$

$$S = \text{slope (\%)}$$

$$G = \text{vehicle gradability (\%)}$$

$$S_2 = S_1 \times F_1 \quad \text{or} \quad S_2 = \text{speed after vegetation and slope effect (kph)}$$

$$S_1 \times F_2 \quad F_1 = \frac{\text{stem spacing - mean stem diameter - vehicle width}}{2 \times \text{vehicle width}}$$

$$F_2 = 1 - \frac{\text{(stem diameter)}^2 \times \text{vehicle width}}{\text{(vehicle override diameter)}^2 \times \text{(stem spacing)}}$$

$$S_3 = S_2 \times F_3 \quad S_3 = \text{final speed after surface roughness, vegetation, and slope effect (kph)}$$

$$F_3 = \text{a factor } \leq 1 \text{ by which surface roughness reduces vehicle speed}}$$

$$S_4 = S_3 \times F_4 \quad S_4 = \text{speed after soil, surface roughness, vegetation, and slope considered (kph)}$$

$$F_4 = \frac{\text{Rated Cone Index - Vehicle Cone Index, 1 pass}}{\text{Vehicle Cone Index, 1 pass}}$$

Drainage hindrance is evaluated only as GO or NO GO.

Figure 1. The Cross-Country Movement Mathematical Model

The equations in the model are solved at different stages in the synthesis process. In section B,  $S_1$  (speed after the effect of slope is considered) and  $F_1$  through  $F_4$  (inhibiting factors for vegetation, surface

<sup>\*</sup> An experimental model developed in the Geographic Sciences Lab., ETL.

roughness and soil) are calculated, and water obstacles are analyzed. In section C, factor overlays for slope, vegetation, watercourses, surface roughness, and soil are combined (synthesized) to create the factor complex overlay. In section D, vehicle speeds are computed for each area on the Complex Overlay.

The following summaries and illustrations show the sequence of analysis steps found in these sections:

#### Flow Diagram

Compute  $S_1$ ,  $F_1$ ,  $F_2$ ,  $F_3$ ,  $F_{4D}$  &  $F_{4W}$  and Do Drainage Obstacle Analysis.



Prepare Factor Complex Overlay.





Prepare Speed Prediction Tabulation Sheet & Compute Speed for each Map Unit on Complex Overlay.



Assign Speed Classes to each Map Unit, Trace Complex Overlay, and Complete CCM Manuscript.



The second secon

- B. Procedures for Factor Calculation
- Step 1. Determine vehicle(s) for which the CCM map(s) is (are) being prepared, and whether the CCM map will be for the wet or dry season or both.
- Step 2. Refer to the vehicle performance characteristics in table 9.

Step 3.

a. If the vehicle under consideration is listed below,  $S_1$  has already been calculated and listed in table 10, therefore, proceed to Step 5. If the vehicle under consideration is NOT listed below, proceed to Step 3b to calculate  $S_1$ .

| Vehicle |
|---------|
| X-M1    |
| M-60    |
| T-62    |
| T-72    |

b. Pull the Slope Factor Overlay out of the data base (figure 2). Using the legend for this overlay, make a Slope Factor Table like that in table 1.

Step 4.

a. Calculate  $S_1$  for each map unit in the legend of the Slope Factor Overlay by substituting vehicle values and slope values into the following equation and solving the equation:

$$S_1 = M - \frac{(S)(M)}{G}$$

where:

 $S_1$  = vehicle speed adjusted for slope effects.

- S = highest slope in map unit category
  in percent (%), found in table 1.
- M = vehicle maximum speed in kilometers
   per hour (kph), found in table 9.



Figure 2. Sample Slope Factor Overlay

Table 1

|             |              | - •                     |          |
|-------------|--------------|-------------------------|----------|
| MAP<br>UNIT | SLOPE<br>(%) | S <sub>1</sub><br>(kph) | NO<br>GO |
| Α           | 3            | 45.6                    |          |
| В           | 10           | 40                      |          |
| C           | 30           | 24                      |          |
| Þ           | 45           | 12                      |          |
| Ε           | 60           | 0                       | X        |
| 7           | >60          | 0                       | ×        |
|             |              |                         |          |

$$S_1 = M - \frac{(S)(M)}{G}$$

M = Max. Vehicle Speed = 48 kph S = Ground Slope, %

G = Max. Slope Vehicle Can Negotiate = 60%

Table 1. Sample Slope Factor Table (S<sub>1</sub>) for M-60 Tank

## Sample Calculation:

Given: 
$$G = 60\%$$
  
 $S = 10\%$   
 $M = 50 \text{ kph}$   
Then:  $S_1 = 50 - \frac{(10)(50)}{60}$   
 $= 50 - \frac{500}{60}$   
 $= 50 - 8.33$   
 $= 41.67 \text{ kph}$ 

- b. If  $S_1<.5,$  the speed situation is NO GO . Mark an "X" under the NO GO column in the Slope Factor Table (table 1) for map units where  $S_1<.5.$
- c. Record in the Slope Factor Table (table 1) the value of  $\mathsf{S}_1$  for each map unit.
- Step 5. Pull Vegetation Data Table 1 (figure 3) out of the data base. (Retain the Slope Factor Overlay for later use.) Make a Vegetation Factor Table like that in table 2. Fill in the Map Unit and Stem Spacing columns using the information listed in Vegetation Data Table 1. Fill in the Mean Stem Diameter column with the numbers in that column on Vegetation Data Table 1 divided by 100. For example, if a mean stem diameter listed on Vegetation Data Table 1 is 18, then .18 must be listed on the Vegetation Factor Table (table 2).

Step 6.

- a. Find the override diameter in meters for the vehicle concerned (table 9).
- b. Compare the mean stem diameter in meters to the override diameter value for each map unit recorded in table 2. If the mean stem diameter (SD) is greater than the override diameter (OD), i.e. SD > OD, calculate  $\mathsf{F}_1$  as shown in "c" below. If the mean stem diameter (SD) is less than or equal to the override diameter (OD), i.e. SD  $\leq$  OD, calculate  $\mathsf{F}_1$  as shown in "c" below and, also,  $\mathsf{F}_2$  as shown in "g" below.
- c. Calculate  $F_1$  for each map unit in table 2 by substituting vehicle values and vegetation values into the following equation and solving:

Figure 3. Sample Vegetation Data Table 1

| 1                                                                           |                                                      | F 5                 | ı        | •            | Š   | ٦      |   | ٦   | $\overline{}$ | ٩        |   | ٦        | ٦   |               |          |      |             | π        | 7        |      | ٦        |     | ٦        | -               |
|-----------------------------------------------------------------------------|------------------------------------------------------|---------------------|----------|--------------|-----|--------|---|-----|---------------|----------|---|----------|-----|---------------|----------|------|-------------|----------|----------|------|----------|-----|----------|-----------------|
| - 1                                                                         | e l                                                  | 25.                 | Ĥ        | #            | -   | 2      |   | 30  |               | 4        |   | \$       | ŝ   | S             |          | ત્ય  | 흑           | 4        | _        | 30   | ŝ        | 3   | 3        | 흴               |
|                                                                             | Ľ,                                                   |                     | _        | 40           | 3   | ē      | ᆜ | æ   |               | 20       | Ľ | 3        | 8   | æ             | _        | ŝ    | ₹           | 깈        |          | 5    | 3        | 8   | <u>s</u> | 3               |
|                                                                             | 4 1 J N 17 3                                         | 1971<br>1971        | 1        | 40           | 20  | ವಿ     | • | 80  | 1             | 94       | • | ŝ        | 5   | Z             | ٠        | 2    | 2           | ١        | ,        | \$   | 9        | 3   | ŝ        | 9               |
|                                                                             | 7.7                                                  | 1941<br>1941        | -        | 40           | 50  | 50     | 1 | 80  | ı             | 15       | • | 40       | 100 | 80            | 1        | 15   | 25          | '        | _        | 30   | 60       | 25  | ş        | 9               |
|                                                                             | 1384 3                                               | index.<br>Engriter  | -        | 2            | 3   | 5      |   | 1   | ı             | . 3      |   | 4        | 3   | ٦             |          | 1    | ۲           |          | _        | 4    | -        | ٦   | ĵ        | 5               |
|                                                                             | Bed Tay both                                         |                     | 1        | ,            | 8   | 2      | - | 8   | ,             | 8        | • | સ        | 22  | 4             | 1        | 4    | 4           | 1        | -        | 20   | 4        | 4   | •        | ž               |
|                                                                             | Ĭ                                                    | 150<br>(cm)         |          |              |     |        |   |     |               |          |   |          |     |               |          |      | П           |          |          |      |          |     |          | $\neg$          |
| w.                                                                          |                                                      | 150<br>150<br>150   |          |              |     |        |   |     |               |          |   |          |     |               |          | П    |             |          |          |      |          |     |          | 25              |
| 5                                                                           |                                                      | 130<br>140<br>(m.)  |          |              |     |        |   |     |               |          |   |          |     |               |          | П    |             |          |          |      |          |     |          |                 |
| So                                                                          |                                                      | 35.<br>130.<br>130. |          |              |     |        |   |     |               |          |   | П        |     |               |          |      |             |          |          |      |          |     |          | 20              |
| 5                                                                           |                                                      | 110<br>120<br>cm;   | Г        |              | П   |        |   | Ţ   |               | Г        | П |          | П   |               |          |      |             | П        |          | П    |          |     |          | ٦               |
| >                                                                           |                                                      | 100<br>1 10<br>(Cm) | П        |              |     |        |   |     |               |          | П |          | 20  |               |          | П    |             |          |          |      |          |     |          | 'n              |
| 9                                                                           | 311                                                  | 100<br>100<br>100   |          |              |     | П      |   |     |               | М        |   | $\vdash$ | 25  |               | _        | Н    | П           | ┨        |          |      | Н        | ٦   |          | ヿ               |
| Ž                                                                           | 1.0                                                  | 985<br>673          | $\vdash$ | Г            | Н   | П      |   | _   |               | Н        | Н | -        | 12  | _             | _        | Н    |             | T        |          | П    | П        | ٦   | $\neg$   | 32              |
| C 2                                                                         | 944 13                                               | 75.<br>080<br>cm    | H        | $\vdash$     | Н   | П      |   |     |               |          | Н | Н        |     |               | -        | Н    | $\vdash$    |          | Т        |      | Н        |     | П        | ٦               |
| 필입                                                                          | 3.1                                                  | 75 E                |          | П            |     |        |   |     |               |          |   |          |     |               | _        | П    |             |          |          |      | П        |     | 7        | 2               |
| A A                                                                         | ٠.                                                   |                     |          | П            |     | П      |   |     |               | -        |   | 7        |     |               | _        | П    |             |          |          | 3    |          | ž   | T        | $\exists$       |
| A E                                                                         | Namitte famouster (say) Says (B. C. Ass. Sept. 1644) | 88 E                |          | М            | П   |        |   | -   | Т             | $\vdash$ | П | 9        |     | _             | _        | Н    |             |          | П        | *    | Н        | -   | $\neg$   | ·χ              |
| 5.5                                                                         | 3.0                                                  |                     | Н        | $\vdash$     | H   |        | _ |     | -             | -        | Н | 35       |     | Т             | ┝╴       | Н    | Н           | Н        | -        | 36   | $\vdash$ | 90  | $\vdash$ | $\ddot{\dashv}$ |
|                                                                             | 2                                                    |                     | ┝        | ┝            | H   | Н      | _ | ├┤  | ┢             | ┝        | Н | 8 3      |     |               | -        | Н    | Н           | Н        | $\vdash$ | 8    | Η        | 10  | 36       | \sq             |
| VEGETATION DATA TABLE                                                       |                                                      |                     | -        | $\vdash$     | Н   | Н      | Н | Н   | ١,            | ۲        | H | -        |     | 001           | <u> </u> | Н    | Н           | Н        |          |      | Н        | 75  | 2        | ~               |
| 5.6                                                                         | :                                                    | <b></b> -           | -        | $\vdash$     | Н   | ٥      | Н | Н   | _             | -        | Н | Н        |     | $\overline{}$ | _        | Н    | Н           | $\dashv$ | $\vdash$ | Н    | $\vdash$ | -   |          | ᅴ               |
| ₹ S                                                                         |                                                      |                     | $\vdash$ | Н            | Н   | 200    | - | Н   | _             | 3        | Н | Н        | Н   | 20            | _        | Н    |             | $\dashv$ | Ц        |      | Н        | 7   | 2        | $\dashv$        |
| S K                                                                         | +                                                    | , :                 | Ц        | 1            | 7   | 600,50 | _ | Ļ   | _             | 7.       | _ | _        | _   | 8             | _        | Щ    | 4           | 4        |          |      | Ц        | 525 | 90       | 4               |
| , E                                                                         | 7                                                    | 30.<br>35.<br>(Cm.) | Щ        | $oxed{\Box}$ | 8   |        |   | Ħ   | _             | 175 25   |   | Ц        |     | 500           |          | Ц    | Ц           | Ц        |          |      | Ц        |     | 111      | _               |
| 7 8                                                                         |                                                      | 1.5 1               |          | ٥            | 7   | 25     |   | 100 |               | 13       |   |          | 30  | 50            |          | Ц    |             |          |          |      | Ц        | ŝ   | 2,       | $\Box$          |
| 12                                                                          |                                                      |                     |          | ٤            | 961 | 35     |   | 125 |               | ۶        |   |          |     | 100           |          |      | 8           |          |          |      |          | 25  | 115      |                 |
| 2                                                                           |                                                      | . = 1               |          | 3            | ð   | 100    |   | ફ   |               | 25       |   |          | 10  | 201           |          | 12   | 1           |          |          |      | 12       | 50  | 100      |                 |
| Ϋ́                                                                          |                                                      | 3 4 5               |          | 35           | 7   | 50     |   | 20  |               |          |   |          |     |               |          | 75   | 50          |          |          |      | 75       | 25  | 9        | $\Box$          |
| 0                                                                           |                                                      | 3 1                 |          | ~            | 3   | П      |   |     | Т             |          | Г | П        |     |               | Т        | Š    | 13          |          |          | М    | 3        |     | 8        | $\Box$          |
| VEGETATION DATA TABLE 1<br>STEM DIAMETERS, CANOPY HEIGHT AND CANOPY CLOSURE |                                                      | . L<br>V 1          |          |              |     |        |   | П   |               | Г        |   |          | П   |               |          | П    |             |          |          |      |          |     |          | ヿ               |
| ST                                                                          |                                                      | , A                 |          | =            | ۲,  | 3.2    | 1 | 6.4 | -             | 7.0      | - | 15.7     | 7.0 | 3.6           | -        | 11.1 | 11.8        | -        | ı        | 15.7 | 10.3     | 3.1 | ž        | 44              |
|                                                                             | Н                                                    |                     | ,        | ন            | 2.5 | 33     | - | 36  | ,             | \$       | , | 9        | 83  | 32            | ,        | 15   | 18          | ·        | •        | 09   | 15       | 41  | 30       | 43              |
|                                                                             |                                                      | digw.               | ,        | 8            | 210 | 1 200  | , | 300 | 1             | 250      | , | 95       | 250 | 9901          | ,        | 0€   | 15          | •        | ,        | •\$  | 511      | 906 | 1363     | Ş               |
|                                                                             |                                                      |                     | 1        | 7            | }   | +      | • | 9   | ٦,            | \$       | 6 | 01       | 11  | र।            | 5        | 4)   | <b>\$</b> } | 31       | u        | 9)   | 11       | જ   | 17       | ส               |

| MAP<br>UNIT | STEM<br>SPACING<br>(m) | MEAN<br>STEM DIA.<br>(m) | F,       | F <sub>z</sub> | NO<br>GO |               |
|-------------|------------------------|--------------------------|----------|----------------|----------|---------------|
| -           | ~                      | -                        | -        |                |          |               |
| 2           | JI. L                  | . 21                     | 1.0      |                |          |               |
| 5           | 7.6                    | . 25                     | .5!      | ]              |          | ľ             |
| 4           | 3.2                    | -33                      | 10       |                | <u> </u> | ľ             |
| 5           | _                      | }                        |          | -              |          | ],            |
| 6           | 6.4                    | . 26                     | .35      |                |          |               |
| 7           | _                      | ~                        |          | -              |          |               |
| 8           | 7.0                    | .40                      | .41      |                |          | ŀ             |
| 9           | -                      | _                        | -        |                |          | ]             |
| 10          | 15.7                   | .60                      | 40       |                |          | 1             |
| 11          | 7.0                    | .83                      | .35      |                |          | ╛             |
| 12          | 3.5                    | . 32                     | 06       |                | ×        | $\frac{1}{2}$ |
| 13          |                        |                          |          | -              |          | 1             |
| 14          | 11.1                   | .15                      | 1.0      | .67.           |          | ╛             |
| 15          | 12.8                   | .15                      | 1.0      | 782            |          | ┧             |
| 16          |                        |                          | _        |                |          | ┧             |
| 17          |                        |                          | <u> </u> |                |          |               |
| 18          | 15.7                   | .60                      | 1.04     |                |          | ╛             |
| 19          | 10.3                   | . 15                     | 0.90     | 765            |          |               |
| 20          | 3.7                    | 42                       | 05       |                | ×        | ╛             |
| 21          | 3.1                    | . 30                     | 1)       |                | ×        |               |
| 22          | 4.9                    | . 93                     | . 05     |                |          |               |

$$F_1 = \frac{SS - SD - W}{2W}$$

$$F_2 = 1 - \frac{(SD)^2 \times W}{(OD)^2 \times (SS)}$$

- If SD > OD find F<sub>1</sub> only.
- If SD ≤ OD find F<sub>1</sub> & F<sub>2</sub> and use largest positive value.
- Neither F<sub>1</sub> nor F<sub>2</sub> can exceed 1. If F value exceeds 1, reduce to 1.
   (F<sub>1</sub> > 1, F<sub>2</sub> > 1)
- Neither F<sub>1</sub> nor F<sub>2</sub> can be less than 0. If F value is 0 or minus, passage is blocked, use 0.

 $(F_1 \triangleleft O, F_2 \triangleleft O)$ 

SS = Stem Spacing SD = Stem Diameter

W = Vehicle Width (3.63m)

OD = Vehicle Override Diameter (.15m)

Table 2. Sample Vegetation Factor Table (F<sub>1</sub>/F<sub>2</sub>) for M-60 Tank

$$F_1 = \frac{SS - SD - W}{2W}$$

SS = stem spacing in meters, listed in table 2.

SD = mean stem diameter at breast height in meters, listed in table 2.

W = vehicle width in meters, found in table 9.

## Sample calculation:

Given: SS = 7.6 meters

SD = .25 meters

W = 3.63 meters

Then: 
$$F_1 = \frac{7.6 - .25 - 3.63}{7.26}$$

$$= \frac{3.72}{7.26}$$

$$= .51$$

d. If  $F_1$  is greater than 1,  $(F_1 > 1)$ , let  $F_1$  equal 1,  $(F_1 = 1)$ . Record the value 1 in table 2.

e. If  $F_1$  is less than or equal to 0,  $(F_1 \le 0)$ , let  $F_1$  equal 0,  $(F_1 = 0)$ . Record 0 in table 2, and mark an "X" in the NO GO column of table 2.

f. If  $\textbf{F}_1$  is between 0 and 1, (0 <  $\textbf{F}_1$  < 1), record the calculated value in table 2.

g. Calculate  $F_2$  for each map unit where the mean stem diameter (SD) is less than or equal to the override diameter (OD), i.e. (SD  $\leq$  OD), by substituting values into the following equation and solving:

$$F_2 = 1 - \frac{W(SD)^2}{SS(OD)^2}$$

SD = mean stem diameter at breast height in meters, listed in table 2.

W = vehicle width in meters, found in table 9.

OD = vehicle override diameter in meters, found in table 9.

SS = stem spacing in meters, listed in table 2.

## Sample calculation:

Given: 
$$W = 3.63$$
 meters

Then: 
$$F_2 = 1 - \frac{(3.63)(.15)^2}{(11.1)(.15)^2}$$
  
 $= 1 - \frac{(3.63)(.0225)}{(11.1)(.0225)}$   
 $= 1 - \frac{.082}{.250}$   
 $= 1 - .328$   
 $= .672$ 

h. If F2 is less than or equal to 0, (F2  $\leq$  0), let F2 equal 0, (F2 = 0). Record 0 in table 2.

= .67

i. If  $F_2$  is greater than or equal to 1,  $(F_2 \ge 1)$ , let  $F_2$  equal 1,  $(F_2 = 1)$ . Record 1 in table 2.

j. If  $F_2$  is between 0 and 1, (0 <  $F_2$  < 1), as in the sample calculation above, record the value of  $F_2$  in table 2. For the sample calculation, the value .67 would be recorded in table 2.

#### Step 7.

a. In table 2 there may now be some map units which have values for both  ${\bf F}_1$  and  ${\bf F}_2$ . Compare these values to see which is larger.

b. If the  $\rm F_1$  value is larger than the  $\rm F_2$  value, ( $\rm F_1$  >  $\rm F_2$ ), cross out the  $\rm F_2$  value on table 2.

c. If  $\rm F_1$  equals 0, ( $\rm F_1$ = 0), and there is no  $\rm F_2$  value, place an "X" in the NO GO column.

d. If  $F_1$  and  $F_2$  are both 0, ( $F_1$  = 0 and  $F_2$  = 0), place an "X" in the NO GO column.

e. If  $F_2$  is larger than  $F_1$ ,  $(F_2 > F_1)$ , cross out the  $F_1$  value on table 2.

f. If  ${\bf F}_1$  and  ${\bf F}_2$  have the same value, ( ${\bf F}_1$  =  ${\bf F}_2$ ), cross out the  ${\bf F}_1$  value on table 2.

Step 8. Pull the Surface Roughness Factor Overlay (figure 4) out of the data base. Using the legend on the overlay, make a table like that in table 3.

Step 9.

- a. Pull the Soil Data Table (figure 5) out of the data base. Make a Soil Factor Table like that in table 4.
- b. Use the information in the Soil Data Table to fill in the map unit column of table 4 with each map unit's number and Unified Soil Classification System (USCS) symbol for the top 15 to 30 cm (centimenters) of the soil, if available. Record the associated  ${\rm RCI}_{\tt dry}$  and  ${\rm RCI}_{\tt wet}$  for this soil layer as found in the Soil Data Table. (If this specific layer of soil is not given on the Soil Data Table, simply use what is given.)
- c. For map units with the following Unified Soil Classification System (USCS) symbols shown on the Soil Data Table, fill in the  $F_4$  DRY and  $F_4$  WET columns on table 4 with the number 1:

#### USCS SYMBOLS

GW

GP

SW

SP

d. For the remaining map units on table 4, calculate  $\mathbf{F}_{\!_{4}}$  DRY and . WET using the following equations:

$$F_{4D} = \frac{RCI_{D} - VCI_{1}}{VCI_{50} - VCI_{1}}$$

$$F_{4W} = \frac{RCI_{W} - VCI_{1}}{VCI_{50} - VCI_{1}}$$

where F  $_{4\,D}$  = speed reduction factor owing to soil in dry state.

 $F_{4W}$  = speed reduction factor owing to soil in wet state.

 $RCI_D$  = rating cone index for the soil type under dry conditions, found in the Soil Data Table (figure 5) or table 11.



<sup>\*</sup>The legend for surface roughness given here is for illustration purposes only. At the time of printing, surface roughness categories were still under development as part of the forthcoming Terrain Analyst Guide for surface configuration. It is anticipated that the final surface roughness categories will be as few as four: smooth, irregular, broken, rugged.

Figure 4. Sample Surface Roughness Factor Overlay

| MAP<br>UNIT | TRACKED<br>VEHICLE<br>(F <sub>3T</sub> ) | WHEELED<br>VEHICLE<br>(F <sub>3W</sub> ) |  |  |  |  |
|-------------|------------------------------------------|------------------------------------------|--|--|--|--|
| 1           | 1                                        | 1                                        |  |  |  |  |
| 2           | 1                                        | .9                                       |  |  |  |  |
| 3           | .9                                       | .5                                       |  |  |  |  |
| 4           | .5                                       | .3                                       |  |  |  |  |
| 5           | .3                                       | .1                                       |  |  |  |  |
| 6           | .2                                       | NO-GO                                    |  |  |  |  |
| 7           | .1                                       | NO-GO                                    |  |  |  |  |
| 8           | NO-GO                                    | NO-GO                                    |  |  |  |  |

Note: F<sub>3</sub> Values are the same for all Tracked Vehicles and for all Wheeled Vehicles

Table 3. Sample Surface Roughness Factor Table (F<sub>4T</sub>/F<sub>4W</sub>) for Tracked & Wheeled Vehicles

REMARKS Š žes. 521 DRY Š 8 ₹ õ WET 8 9 ĸ 8 Š ઢ TONINESS STATE OF GROUND SOIL DATA TABLE DEPTH TO BEDROCK (m) 3 52 ક્ર 8 8 \$ USCS 8 8 2 GE GD SP 830 포 보 공 3 3 7 E = 3 SOIL PROFILE 0-10 10-25 25-30 0 - 20 20 - 40 40 - 60 0-26 26-46 46-58 0-30 30-40 40-50 0-10 10-40 40-50 DEPTH (cm) 0 - 20 20 - 30 30 - 35 HORIZON ୟ ପ ଠେ < 0 0 **≺ છા** ડ **∢ 60** ℃ **⋖ ゆ** ひ **⋖ 0** ∪ MAP UNIT NUMBER 2 و М 4 ~

Figure 5. Sample Soil Data Table

| 3               | SARAMA        |             |       |      |              |           |          |           |          |           |                                       | -       |      |               |     |      |                                         |          |          |
|-----------------|---------------|-------------|-------|------|--------------|-----------|----------|-----------|----------|-----------|---------------------------------------|---------|------|---------------|-----|------|-----------------------------------------|----------|----------|
|                 | DRY           | 521         |       |      | 9            |           |          | 165       |          |           | oi.                                   |         |      | ŝ             |     |      | ā                                       |          |          |
| RCI             | WET           | 40          |       |      | ez           |           |          | &         |          | _         | 2                                     |         |      | 57            |     |      | 52                                      |          |          |
| 0.1             | OCCUR         |             |       |      |              |           |          |           |          |           |                                       |         |      |               |     |      |                                         |          |          |
| ONNO            | ASOND         | MANIMONANIS | Ξ     | ==   | SE CHELLOSES |           |          | HHAMMMANS | Ξ        |           | 3 3                                   |         |      | MANDEN MARKET | Ξ   |      | 3 3                                     |          |          |
| STATE OF GROUND | Acc           | ) ve ve     | =     |      | T T          | =         | =        | I<br>I    | $\equiv$ | =         | * * * * * * * * * * * * * * * * * * * | =       |      | X             | =   |      | 2 2 2 2 2 2 3 3 3 5 5 5 5 5 5 5 5 5 5 5 | $\equiv$ |          |
| TATE            | FMAMJ         | MMM         |       |      | 3            |           |          | 3         |          |           | 3                                     |         |      | 3<br>3        |     |      | 3                                       | $\equiv$ |          |
| , °             | JF            | 3 5         | _     |      | 96           | _         |          | 3 E       | =        |           | 3,5                                   |         |      | 36            | _   |      | 3,5                                     | =        |          |
| DEPTH           | BEDROCK       | i           |       |      | 8            |           |          | 9         |          |           | ر.                                    |         |      | į             |     |      | જ                                       |          |          |
|                 | USCS          | 73          | ટ્ટ   | ¥    | CH           | <b>39</b> | <b>%</b> | 3.5       | ĞΚ       | J<br>J    | пO                                    | てい      | SM   | Ę             | 70  | ફ    | 호                                       | S.H      | мн       |
| SOIL PROFILE    | DEPTH<br>(cm) | 0 - 28      | 28-30 | 30-5 | 0-15         | 92-91     | 25-39    | 07-0      | 70 - 100 | 100 - 120 | 0 - 26                                | 20 - 40 | ÷-0+ | 0 - 20        | 8-3 | 30-3 | 0 - 40                                  | 40 - 50  | 50 - 60  |
|                 | HORIZON       | ٧           | 40    | ບ    | A            | S         | IJ       | ন         | 89       | ပ         | A                                     | •6      | ၁    | ٧             | 9   | ນ    | Ą                                       | 89       | <b>ಎ</b> |
| MAP             | NUMBER        | L           |       |      | 8            |           |          | e         |          |           | 0                                     |         |      | =             |     |      | 12                                      |          |          |

Figure 5 (Continued).

## SOIL FACTOR TABLE FOR M-60 TANK

| MAP     |     | DRY             |               |     | WET             |       |                                                        |
|---------|-----|-----------------|---------------|-----|-----------------|-------|--------------------------------------------------------|
| UNIT    | RCI | F <sub>4D</sub> | No-Go         | RCI | F <sub>4W</sub> | No-Ga | ]                                                      |
| 1 (50)  | 130 | 2.91            |               | 50  | .55             |       | ]                                                      |
| 2 (MH)  | 115 | 201             |               | 15  | 2               | X     |                                                        |
| 3 (aw)  |     | 1               |               |     | 1               |       | $F_{3D} = \frac{RCI_D - VCI_1}{VCI_{50} - VCI_1}$      |
| 4 (ch)  | 125 | ين الم          |               | 40  | .33             |       | $F_{3D} = \frac{RCl_W - VCl_1}{VCl_{50} - VCl_1}$      |
| 5 (GP)  |     | 1               |               |     | 1               |       | RCI <sub>D</sub> = Rating Cone                         |
| 6 (SP)  |     | 1               |               |     | 1               |       | Index, Dry State                                       |
| 7 (cr)  | 125 | يثد             |               | 40  | . 33            |       | RCI <sub>W</sub> = Rating Cone<br>Index, Wet State     |
| 8 (CH)  | 140 | 盐               | · <del></del> | 65  | .88             |       | VCI <sub>1</sub> = Vehicle Cone                        |
| 9 (GP)  |     | 1               |               |     | +               | le,   | Index, one pass                                        |
| 10 (OH) | 1(0 | 1.8             |               | 5   | 44              | ×     | VCI <sub>50</sub> = Vehicle Cone<br>Index fifty passes |
| 1/ (ML) | 120 | 22              |               | 25  | D               | ×     |                                                        |
| 12 (ML) | 120 | 214             |               | 25  | 0               | Х     |                                                        |

Table 4. Sample Soil Factor Table ( $F_{4D}$  &  $F_{4W}$ ) for M-60 Tank ( $F_4$  cannot exceed 1.0)

 ${\sf RCI}_W$  = rating cone index for soil type under wet conditions, found in the Soil Data Table (figure 5) or table 11.

 $VCI_1$  = vehicle cone index for one pass, found in table 9.

 $VCI_{50}$  = vehicle cone index for 50 passes, found in table 9.

### Sample Calculation:

Given: 
$$RCI_D = 46$$
  
 $VCI_1 = 45$   
 $VCI_{50} = 60$   
Then:  $F_{4D} = \frac{46 - 45}{60 - 45}$   
 $= \frac{1}{15}$ 

= .07

Record the  $F_4$  values for these map units in table 4. If any  $F_4$  value is greater than 1,  $(F_{4D} > 1 \text{ or } F_{4W} > 1)$ , change it to 1,  $(F_{4D} = 1 \text{ or } F_{4W} = 1)$ .

Step 10. Pull the Watercourses and Water Bodies Data Tables (figures 6 and 7) out of the data base. (Put the soil overlay aside for later use.) Using the Watercourses and Water Bodies Data Tables, make a Movement Analysis of Drainage Features table like table 5.

a. List the feature (watercourse or water body) ID number in the first column of table 5, and the segment letters in the second column.

b. Refer to the vehicle performance characteristics table in table 9 and extract the following performance characteristics; record in table 5.

| PERFORMANCE<br>CHARACTERISTIC                  | COLUMN OF<br>TABLE 5 |
|------------------------------------------------|----------------------|
| Max. fording depth w/o snorkel                 | 4a                   |
| Max. vertical obstacle height                  | 5a                   |
| Vehicle approach angle                         | 6a                   |
| Max. stream velocity vehicle can cross (m/s)   | 7a                   |
| Vehicle Cone Index, 1 pass (VCI <sub>1</sub> ) | 8a                   |

c. Use Watercourses and Water Bodies Data Tables 1 and 2 (figures 6 and 7), and enter the data for each segment of each feature in table 5. If only a dry season CCM map is to be prepared, enter data for dry season only. If only a wet season CCM map is to be prepared, enter data for wet season only. If CCM maps are to be prepared for both wet and dry seasons, enter data for both wet and dry seasons. As each entry is made, compare it with the preceding entry in the row for the vehicle performance. If the watercourse value exceeds that of the vehicle performance, record NO GO in the following space and stop the analysis for that segment.

Bank height and bank slope conditions are considered together as shown in figure 8.

| BANK<br>HEIGHT                                        | BANK<br>SLOPE                           | MOVEMENT<br>CONDITION |
|-------------------------------------------------------|-----------------------------------------|-----------------------|
| >Vehicle Vertical Obstacle Capability                 | >Vehicle Approach<br>Angle              | No Go                 |
| >Vehicle Vertical Obstacle Capability                 | <vehicle approach<br="">Angle</vehicle> | Go                    |
| <vehicle vertical<br="">Obstacle Capability</vehicle> | Any                                     | Go                    |

Figure 8. Bank Condition Analysis

Figure 6. Sample Watercourses and Water Bodies Data Table 1

| SCALE C                                       | E OF BA  | SCALE OF BASE MAP 150 000<br>USAETL | 20 000        |                       |                 |          |           | Wat                   | erco     | Watercourses and Water Bodies Data Table      | and       | Wa    | iter B                   | ģ          | es Da                  | ia i                              | Tab        | <u>1</u>         |                        |       | Ш                | VI 0955                                    | 10955               | 2560 IV | July 2001 | 5 |
|-----------------------------------------------|----------|-------------------------------------|---------------|-----------------------|-----------------|----------|-----------|-----------------------|----------|-----------------------------------------------|-----------|-------|--------------------------|------------|------------------------|-----------------------------------|------------|------------------|------------------------|-------|------------------|--------------------------------------------|---------------------|---------|-----------|---|
|                                               |          |                                     |               |                       |                 | Š        | SONA      | L DEPTH, W            | DTH A    | SEASONAL DEPTH WIDTH AND VELOCITY INFORMATION | TY INF    | ORMA  | TION                     |            |                        |                                   | 1 **       | BANK INFORMATION | MATION                 |       |                  |                                            |                     |         |           |   |
| Í                                             | YDROGR   | HYDROGRAPHIC FEATURE                | TURE          | GAP                   | Ī               | ¥ W      | TER C     | HIGH WATER CONDITIONS | <u> </u> | WO7                                           | WATE      | R CON | LOW WATER CONDITIONS     | Γ          |                        | RGHT                              | RIGHT BANK |                  |                        | LEFT. | EFT BANK         |                                            | , APA               |         |           |   |
| ōỗ                                            | LOCAL    | CLASS                               | SEG<br>LETTER | WIDTH<br>IN<br>METERS | SEG IN MONTHIS) | MIN      | DEPTH (M) | WATER<br>WIDTH<br>IN  | VEL      | MONTH(S)                                      | DEPTH (M) | ž ×   | WATER<br>WIDTH<br>NETERS | VEL        | HEIGHT<br>IN<br>METERS | SLOPE<br>IN<br>DEGREES<br>MIN MAX |            | MATERIAL         | HEIGHT<br>IN<br>METERS |       | PE<br>FES<br>IAX | SLOPE<br>IN<br>DEGREES MATERIAL<br>MIN MAX | DISCHARGE<br>CU M S |         | SKETCH    | 2 |
| <u> </u>                                      |          | Į,                                  | 3             | a                     | Yek             | 9.5      | •         | ō                     | 3.1      | Stot                                          | 6.0       | 0.5   | •                        | 9:         | <u>.</u> 5             | 9                                 | ü          | CP               | <u> </u>               | •     | 71               | 9                                          | 740                 |         |           | П |
| ,                                             | 3        |                                     | 4             | T                     | दे              | 7,0      | 6.5       | •                     | 3.0      | 564                                           | ő         | 6.9   | 5                        | 62         | 9.5                    | 0                                 | 21         | X                | 6.6                    | 4:    | 1                | 3                                          | 22                  |         |           | _ |
| 7                                             | 4        |                                     | ۵             | 2                     | ž               | •        | Ξ         | 5                     | 2.5      | \$                                            | 0.0       | 6.7   | 2                        | ū          | 9.2                    | Æ                                 | ī          | ಕ                | ī.                     | 2     | 2                | ಕ                                          | <b>%</b>            |         |           |   |
| _                                             | 1        | 4                                   | 9             | ā                     | वे              | 6.9      | 70        | ٥                     | 2        | 25                                            | 9.0       | 7.0   | 100                      | 0.5        | ٩                      | ı                                 | •          | ₹                | 1.2                    | 7     | Ð                | ₹                                          | 35                  |         |           |   |
| <u>,                                     </u> | See      | Creat Mean                          | ۵             | и                     | ş               | 0.5      | - 0       | ñ                     | 2        |                                               | 0.2       | 0.5   | Q                        | 0.7        | 2.7                    | 8                                 | 10         | en               | 5.0                    | 2     | 12               | 3                                          | 200                 |         |           | ٦ |
|                                               | _        |                                     | ۵.            | ۳,                    | 4               | 5        | 8         |                       | 22       | 33                                            | 90        | 38    | æ5                       | 6.0<br>6.0 | 1.2<br>2.0             | 23                                | 1 1        | ઇદ્ર             | 2.0<br>3.0             | Ãδ    | 3                | પ્રજ                                       | <u>&amp;</u> 3      |         |           |   |
| +                                             |          | 4                                   | نه ه          | 3 %                   | Ė               | - v      | 9 0       | 24                    | 1,3      | , K.                                          | 7.0       |       | 8.                       | 9.         | 'n:                    | <b>9</b> 1                        | Ī.         | 3                | 2.0                    | ٠ د   | 1                | 3                                          | <b>3</b>            |         |           |   |
|                                               |          |                                     | 40            | \$. <sup>36</sup>     | 主               | 7.2      | 3.5       |                       | ₹. ÷     | K K                                           | <u> </u>  | 2.5   | 6 ½                      | 33         | . 4<br>5 0             | - =                               | 12         | F Z              | 9 2                    | ~     | 1 1              | इ इ                                        | 8 3                 |         |           |   |
| L                                             | ٦        |                                     | ٥             | 4                     | Ą               | 0        | 40        | ō                     | 2.6      | 3                                             | 9         | 70    | 90                       | <u>-</u>   | 0.2                    | ٠                                 | 9          | 3                | ٥                      | 2     | 2                | 3                                          | 8                   |         |           | _ |
| V                                             | į        | 4                                   | 4             | ક                     | Ž               | 6.9      |           | £                     | 20       | ğ                                             | 9         | 9     | Æ                        | <u>•</u>   | ů,                     | ī                                 | r          | 3                | 9.0                    | ł     | 4                | 3                                          | £                   |         |           | _ |
| `                                             |          |                                     | <b>ა</b>      | <u>"</u>              | Ì               | 80       | _         | 52                    | ī        | Ŕ                                             | 0.3       | 6.0   | ŋ                        | 8.5        | 3.0                    | 2                                 | 0          | શ                | 4                      | J     | Ð                | S                                          | ĝ,                  |         |           |   |
|                                               |          |                                     | ષ             | *                     | ì               | <u>.</u> | 1.5       |                       | 9        | K                                             | 1.0       | 2.0   | 3                        | 6.5        | 24                     | 20                                | 1          | ತ                | 4                      | 1     | 2                | ક                                          | 2,2                 |         | ١         | 1 |
| ٠                                             | <b>.</b> | <b>2</b>                            | ક             | 2,                    | Mar             | 03       | 63 0.5    | 2                     | 0.8      | 3201                                          | 90        | 6.0   | Ī.                       | 2.0        | 9                      | *                                 | 2          | ક                | 9                      | 8     | ū                | ગુ                                         | ۲                   |         |           |   |

5561 IV 5561 II

11955

Figure 6 (Continued).

|                           |     |     |                |                    |     |                      |                                                |       |                                            |                      |        |                                  |      |              |                            |                                            |                  |                |                            | 1999                                                  | 1 1999              | VI 1956  | <u></u>                 |
|---------------------------|-----|-----|----------------|--------------------|-----|----------------------|------------------------------------------------|-------|--------------------------------------------|----------------------|--------|----------------------------------|------|--------------|----------------------------|--------------------------------------------|------------------|----------------|----------------------------|-------------------------------------------------------|---------------------|----------|-------------------------|
|                           |     |     |                |                    |     |                      |                                                |       |                                            |                      |        |                                  |      |              |                            |                                            |                  |                |                            | 5561 111                                              |                     | 5561 111 | V733                    |
| SCALE OF BASE MAP 1 SCOOL | ą.  | 8   |                |                    |     |                      | Wate                                           | Š     | Watercourses and Water Bodies Data Table 1 | <u>a</u>             | ¥a     | ter Bé                           | odie | is Dai       | E<br>E                     | able 1                                     |                  |                |                            | VI 0955                                               | - 0955              | VI 0958  | July 2001               |
|                           |     |     |                |                    |     | ASONAL               | SEASONAL DEPTH, WIDTH AND VELOCITY INFORMATION | OTH A | VD VELOCIT                                 | TY E                 | ORMA   | TION                             | Γ    |              |                            | BANK                                       | BANK INFORMATION | ATION          |                            |                                                       | _                   |          |                         |
| HYDROGRAPHIC FEATURE      | ı Æ | i i | OBY<br>SAP     | GAP<br>GAP<br>HIGH | W H | TER CO               | HIGH WATER CONDITIONS                          |       | rοw                                        | WATE                 | N CON  | LOW WATER CONDITIONS             | Γ    |              | RIGHT BANK                 | BANK                                       | -                |                | LEFT BANK                  | N.K                                                   | WAX                 | L        |                         |
| CLASS                     |     | SEG | METERS         | MONTHIS            | MIN | DEPTH (M)<br>MIN MAX | WATER<br>WIDTH<br>IN<br>METERS                 | VEL   | DEPTH IM!                                  | DEPTH IM)<br>MIN MAX |        | WATER<br>WIDTH VEL<br>METERS MPS |      | HEIGHT<br>IN | SLOPE<br>DEGREE<br>WIN MA) | SLOPE<br>IN<br>DEGREES MATERIAL<br>WIN MAX |                  | HEIGHT<br>IN C | SLOPE<br>SEGREE<br>WIN MA) | HEIGHT SLOPE<br>IN DEGREES MATERIAL<br>METERS MIN MAX | DISCHANGE<br>CU M/S |          | CROSS SECTION<br>SKETCH |
| Strate                    |     | 9   | =              | ş                  | 20  | 0.5                  | *                                              | \$1   | Sept                                       | 0.0                  | 6.0    | *                                | 2.0  | 2            | 3                          | 2                                          | ¥ 3              | •              | <u>a</u>                   | 3                                                     | 8                   |          |                         |
|                           |     | ۵   | 7              | ž                  | 03  | 1.0                  | 2                                              | 1.5   | <b>\$</b>                                  | 7.0                  | 9.     | ð                                | ō    | 4            | 9                          | ¥                                          |                  | 7              | <u>h</u>                   | ¥                                                     | 8                   |          |                         |
|                           |     | ઢ   | <b>07</b> /04) | Mar                | 3.0 | 5.0                  | 27: Jan                                        | 2.0   | 3                                          | 22                   | 20 3.0 | 34/26                            | =    | ı            | <del>,</del>               |                                            | -                | 70             | 3                          | 3                                                     | 1                   | L        |                         |
| Take                      |     | ۵   | 26/mg          | <u>\$</u>          | %   | 5.0                  | <b>3</b> /8                                    | 2.0   | *                                          | 2.                   | 3      | 100/17                           | ģ    | ı            | <u>.</u>                   | <br> -                                     |                  | •              | *                          | 3                                                     | 1                   |          |                         |
|                           |     | J   | 7./4m          | ¥                  | 3.5 | 5.5                  | 260/35a                                        | 2.0   | K                                          | 2.5                  | 3.5    | 1                                | •    | 1            | <u> </u>                   | 1                                          |                  | š              | <u>.</u>                   | Ŧ                                                     | 1                   |          |                         |
|                           |     | ન   | 12/22          | ¥                  | 3.0 | ŝ                    | 00/200                                         | 2.0   | ķ                                          | 2.5                  | 3.0    | 32/130                           | •    | ν <u>-</u>   | <u></u>                    | 93                                         |                  |                |                            |                                                       | 1                   |          |                         |
|                           |     | ð   | 222/400        | Ì                  | 3.0 | 5.5                  | 2 / 20                                         | 6.2   | 3                                          | 22                   | 3.5    | *                                | •    | ę            | £                          | 3                                          |                  |                |                            |                                                       | 1                   |          |                         |
|                           |     | ช   | 7              | Mer                | 9,0 | 10                   | 12                                             | 3     | F                                          | 9                    | 3      | ٥                                | ٥    | •            | 2                          | 3                                          | -                | 2              | 1 2                        | ¥                                                     | 1                   | _        |                         |
| 1                         |     | 2   | Ļ              | ğ                  | 15  | 2 .                  | ×                                              | 52    | ķ                                          | ٥                    | ž      | a                                | 6.0  | ~            | 5                          | ₹<br><del>1,</del>                         | _                | •              | 1                          | 1                                                     | ı                   |          |                         |
|                           |     | J   | 4              | 幸                  | 4.7 | 7.0                  | *                                              | 2.0   | 8                                          | ž                    | *      | ×                                | 8.0  | 'n           | <u> </u>                   | Į.                                         |                  | ۔              | 3                          | Ŧ                                                     | 1                   |          |                         |

SCALE OF BASE MAP 1 50 000 USAETL

Watercourses and Water Bodies Data Table 1

| HYDROGRAPHIC FEATURE CASP (CASP LETTER MONTHIS) DEPTH IMM MAX WETERS WONTHIS) MIN MAX WETERS WONTHIS) MIN MAX WETERS WETERS WILL WAS METERS WAS MIN WAX WETERS WAS MIN WAX WETERS WAS MIN WAX WETERS WAS WETERS WAS WETERS WIN WAX WETERS WAS WETERS WIN WAX WETERS WE WAX WETERS WIN WAX WETERS WE WANT WAX WETERS WE WANT WAX W | 5 | ¥          | × ×                      | _          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------|--------------------------|------------|
| NOTIONS  LOW WATER CONDITIONS  LOW WATER CONDITIONS  LOW WATER VEL HEIGHT  WIDTH VEL IN  ETERS  WE SHE WES WETERS  WE THEN SHE WES WETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | RIGHT B    | SLOPE<br>SEGREE!         |            |
| ETEN WEDTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |            | HEIGHT<br>IN L           | ,          |
| ETER MEDITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |            | VEL                      | •          |
| ETER MEDITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | VDITIONS   | WATER<br>WIDTH<br>NETERS | ×          |
| ETEN WEDTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | R COR      | N X X                    | 20         |
| ETER MEDITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | WATE       | DEPT                     | 00         |
| ETER MEDITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | רסא        | MONTH(S)                 | Sent.      |
| ETER MEDITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |            | VEL                      |            |
| HYDROGRAPHIC FEATURE ORY HIGH WATER CONTINUITY OF THE ORY HIGH WAT |   | SNOITIONS  | VATER<br>VIOTE<br>ETER   | 4          |
| HYDROGRAPHIC FEATURE ORY HIGH WAIT  ID LOCAL CLASS LETTER METERS MONTHIS) DEPT  ON NAME CLASS LETTER METERS MONTHIS) OF THE MINING MINI |   | ER CC      | H (M)                    | <b>y</b> ( |
| HODOGRAPHIC FEATURE ORY HIGH INDIAN I | , | H WAT      | OEPT<br>MIN              | 00         |
| HYDROGRAPHIC FEATURE ORAN<br>TO LOCAL CLASS LETTER METERS  OLAN IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | ын         | MONTHIS                  | 798        |
| HYDROGRAPHIC FEATURE ID LOCAL NO NAME OLASS LETTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | OBY<br>GAP | METERS                   |            |
| HYDROGRAPHIC FE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | ATURE      | SEG<br>LETTER            | ,          |
| HYDROGR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | APHIC FE   | CLASS                    |            |
| ı ÖÖ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 'DROGR     | LOCAL                    | 20,0       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | Î          | ōÕ                       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |                          |            |

Watercourses and Water Bodies Data Table 2

| OBSTACLES             |                          | DESCRIPTION SKE TON |                                       |     | *************************************** |          |          |      |          |              |              |          | -    |              |          |            |       |     |          |
|-----------------------|--------------------------|---------------------|---------------------------------------|-----|-----------------------------------------|----------|----------|------|----------|--------------|--------------|----------|------|--------------|----------|------------|-------|-----|----------|
|                       | 9                        | O<br>Z              | 1                                     | ı   | 1                                       | 1        | 1        | 1    | Ī        | 1            | 1            | 1        | 1    | 1            | 1        |            | 1     | 1   | 1        |
|                       | MAX                      | Î                   | 10                                    | •   | ٥                                       | 2        | 9        | ٩    | 9        | 2            | :            | 9        | 2    | <u>.</u>     | <u>∘</u> | 9          | 01    | 9   | ģ        |
|                       |                          | B 9 10 11 12        | 02                                    | ~   | -                                       | 4        | 7        | ~    | ~        | ~            | ~            | ~        | ~    | ~            | ~        | 증          | 70    | 7   | 7        |
|                       | NO.OF ICE DAYS PER MONTH | 0.                  | 0                                     | 0   | 9                                       | 0        | 0        | =    | -        | <del>~</del> | 0            | 음        | ÷    | ٥            | =        | 늶          | 9     | -   | 븲        |
| ŝ                     | Q<br>N                   | σ.                  | 3                                     | a   | ं                                       | ٥        | ٥        | 0    | ٥        | 0            | ۰            | 回        | ٥    | 3            | 3        | ٥          | ٥     | •   | <u></u>  |
| ICE CONDITIONS        | PER                      | <b>S</b>            | 00                                    | 0   | 0                                       | 0        | 0        | 0    | •        | تَع          | ۰            | 0        | •    | 4            | 0        | 0          | ٩     | •   | 읭        |
| Ñ                     | AYS                      | φ.                  | 0                                     | 0   | 히                                       | ÷        | -        | ÷    | ÷        | -            | <del>-</del> | =        | 0    | <del>~</del> | ÷        | 픣          | 0     | 0   | 尚        |
| 8                     | Q 3                      | 9<br>9              | 0                                     | a   | 0                                       | ā        | ٥        | •    | ٥        | ٥            | •            | 0        | ٥    | ۰            | 3        | ۵          | ٠     | 3   | ं        |
| ō                     | Ϋ́                       | 3.4                 | 0                                     | ٥   | ٥                                       | ٥        | ٥        | ٥    | 0        | 0            | ۰            | ٥        | ٥    | ٥            | 0        | ٥          | ٥     | ۰   | 의        |
|                       | NO.                      | 2                   | 12                                    | 1 5 | 긒                                       | <u>~</u> | (5)      | 1 61 | <u>~</u> | 35           | <u>~</u>     | <u>~</u> | 1    | <u></u>      | <u>~</u> | 15         | 35    | 15  | <u> </u> |
| 1                     |                          |                     | 9                                     | 1   | 4                                       | ~        | 11       | *    | <u>~</u> | <del>~</del> | =            | <u>~</u> | 1 6  | <u>~</u>     | <u>~</u> | ~          | 3     | 1 6 | 깈        |
|                       |                          | GEN                 | 1                                     | 1   | 1                                       | 1        | ١        | 1    | ١        | ١            | 1            | ١        | 1    | ١            | 1        | 1          | 1     | -   | 1        |
| JACITY                | ANALYSIS                 | CHEM PPM mg L       | 1                                     | ١   | 1                                       | ١        | 1        | 1    | 1        | 1            | 1            | -        | ١    | ١            | 1        | 1          | 1     | 1   | -        |
| WATEROUALITY          | ¥                        | CHEM                | 1                                     | 1   | ١                                       | 1        | 1        | 1    | 1        | ١            | 1            | ١        | 1    | 1            | 1        | ١          | 1     | 1   |          |
| -                     | i di                     | DATE                | 1                                     | 1   | ١                                       | ł        | . }      | ١    | i        | 1            | }            | }        | ,    | Į            | ١        | 1          | 1     | ۱   | ١        |
| 1                     | -                        | 5 0                 | 1                                     | 1   | 1                                       | 1        | 1        | ī    | ī        | 1            | ī            | ī        | 1    | 1            | 1        | 1          | 1     | I   |          |
| INFLUENCE             | DAILY                    | METERS              | 1                                     | 1   | 1                                       | 1        | 1        | 1    | 1        | 1            | 1            | 1        | Ī    | 1            | 1        | 1          | 1     | 1   | 1        |
|                       |                          | MOS                 | 1                                     | 1   | ı                                       | 1        | 1        | 1    | 1        | 1            | 1            | 1        | 1    | 1            | 1        | 1          | 1     | Ī   | 1        |
| TIDAL                 |                          | MOS                 | 1                                     | 1   | ١                                       | 1        | }        | 1    | 1        | 1            | 1            | i        | 1    | 1            | ł        | ł          | 1     | 1   | - 1      |
| BOTTOM CONDITIONS     | SLOPE                    | S                   | 7                                     | 6   | 7                                       | ç        | ~        | 4    | <u>~</u> | 7            | ~            |          | 4    | ~            | ~        | ^          | 7     | 4   | 3        |
| BOTTON C              |                          | MATERIAL            | Œ                                     | કુ  | SE                                      | gy<br>F  | <u> </u> | 3.2  | 3        | 3            | &<br>        | Ī        | Pork | <b>&amp;</b> | ₹        | <u>ي</u> د | dS    | 5   | CH       |
| URES                  |                          | Sec<br>So           | ત                                     | 3   | م                                       | ø        | م        | ષ    | ء        | ပ            | ~જ           | စ        | d    | م            | ပ        | ~5         | હ     | ٥   | م        |
| HYDROGRAPHIC REATURES |                          | CLASS               | Stream                                |     | 3                                       | 3        | THE W    |      |          | Creek Stream |              |          |      | <b>3</b>     |          |            | Sheam | 3   | STHERM   |
| POGRAP                |                          |                     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1   | S. Sanda                                | ┿~~      | 3        |      |          | Creek        |              |          |      | -<br>Ž.      |          |            | 3     | 6   | Run      |
| HAC.                  |                          | οŞ                  | E                                     |     | ~                                       |          |          |      |          | =            |              |          |      |              |          |            | و     |     |          |

Figure 7. Sample Watercourses and Water Bodies Data Table 2

Watercourses and Water Bodies Data Table 2

|                                         | _                        | -                                    |          |              |              |                |      |         |            |                |
|-----------------------------------------|--------------------------|--------------------------------------|----------|--------------|--------------|----------------|------|---------|------------|----------------|
| OBSTACLES                               |                          | DESCRIPTION/SKETCH                   |          |              |              |                |      |         |            |                |
| L                                       | 9                        |                                      | 1        | ı            |              | 1              | ١    | L       | _ 1        | I              |
|                                         | MAX                      | 1 2 3 4 5 6 7 8 9 10 11 12 THICKNESS | 91       | 15           | 51           | 57             | 15   | d       | 2          | 9              |
| П                                       |                          | 15                                   | 7        | ۲            | 7            | 2              | 2    | 7       | 4          | 2              |
| П                                       | Ī                        | 11                                   | 0 0      | 0 0          | 0            | •              | 0 0  | 0       | 00000000   | 66 100000001 8 |
|                                         | ğ                        | - 6                                  | 3        | <del>-</del> | ÷            | <del>-</del> - | -    | 9       | -          | ÷              |
| ICE CONDITIONS                          | ER                       | 8                                    | 9 9 9    | <u> </u>     | ٥            | 000000         | 0 0  | 0 0 0 0 | 0          | =              |
| Ĕ                                       | l S                      | [<br>,                               | q        | 0            |              | 0              | 0    | ٥       | ٥          | 6              |
| NO<br>O                                 | DA)                      | 9                                    | ٥        | •            | 0            | ٥              | 0    | 0       | 0          | 0              |
| E C                                     | Ę.                       | 5 1                                  | a a .    | 0            | 0            | <u> </u>       | 0000 | 0 0 0   | <u>-</u>   |                |
| Ιŷ                                      | NO OF ICE DAYS PER MONTH | 3 4                                  |          |              |              | _              | -    | -       | =          |                |
|                                         | 2                        | 2                                    | ı        | <u>~</u>     | 5            | 1.5            | 15   | 51      | ž.         | -20            |
| } .                                     |                          | -                                    | 5        | ~            | ~            | -2             | 5    | 1       | ~          | 2              |
|                                         |                          | GEN                                  | 1        | 1            | ı            | 1              | ١    | ı       | ı          | ı              |
| JALITY                                  | ANALYSIS                 | CHEM PPM ING LI                      | 1        | 1            | ı            | J              | ١    | 1       | ı          | ł              |
| WATERQUALITY                            | á                        | CHEM                                 | 1        | i            | 1            | 1              | ı    | ı       | ı          | ı              |
| 5                                       |                          | DATE                                 |          | 1            | I            | 1              | ł    | ı       | 1          | 1              |
|                                         | -                        | <u> </u>                             |          |              | ī            |                | 1    | 1       | 1          | • 1            |
| TIDAL INFLUENCE                         | DAILY                    | NETERS                               | 0.)      | 6.1          | •:<br>       | 0:1            | 0.1  | ſ       | ı          | 1              |
| ž                                       |                          | MON                                  | Tal.     | 13           | É            | 1              | F    |         | ì          | 1              |
| 1                                       |                          | MOS MOS                              | \$       | 芝            | 4            | \$             | 支    |         | ī          | ı              |
| ONDITIONS                               | SLOPE                    | S                                    | _        | _            | _            |                | _    | l       | ı          | 1              |
| HYDROGRAPHIC FEATURES BOTTOM CONDITIONS |                          | MATERIAL                             | ¥        | ¥            | ź            | 불              | 玄    | अ       | E          | ತ              |
| URES                                    | 3                        | N O                                  | ఠ        | م            | ی            | ~ <b>S</b> `   | ಬ    | ٨       | ۵          | ప              |
| PHIC FEAT                               |                          | CLASS                                |          |              | Airer Sirban |                |      |         | See See    |                |
| YDROGRA                                 |                          | NO NAME                              |          | ,            |              |                |      | 1       |            | <u>.</u>       |
| L.                                      | <u>L '</u>               | ž                                    | <u> </u> |              | ∞            |                |      |         | <u>o</u> _ |                |

Figure 7 (Continued).

Table 5. Sample Movement Analysis of Drainage for M-60 Tank

| `L | <b>;</b>        |                             |                       |             |            |                | -          |                |             |              | ٠.                    |               |       |                    |                  |
|----|-----------------|-----------------------------|-----------------------|-------------|------------|----------------|------------|----------------|-------------|--------------|-----------------------|---------------|-------|--------------------|------------------|
|    | 3               | 48                          | 4p                    | 4c          | Şa         | 2p             | 6 <b>a</b> | <b>6</b> b     | 9c          | 7.a          | d,                    | 7.c           | 8а    | £                  | 9¢               |
|    |                 | W                           | WATER DEPTH           | TH.         | BA         | BANK HEIGHT    |            | AND BANK SLOPE | PE          | WAT          | WATER VELOCITY        | CITY          | вотто | BOTTOM CONDITIONS  | SNOIL            |
| SE | SEASON          | VEH<br>FORD<br>DEPTH<br>(m) | WATER<br>DEPTH<br>(m) | 00<br>NO 60 | VEH<br>(E) | BANK<br>HEIGHT | VEH<br>A A | BANK<br>SLOPE  | 05 ON<br>05 | VEH<br>(mps) | WATER<br>VEL<br>(mps) | 05 ON         | NCI   | BOTT<br>RGI<br>WET | 09 ON<br>09      |
|    | ¥e+             | 1.22                        | 0.1                   | <b>ಪೆ</b>   | 16.        | 1.5            | 43         | 01             | જુ          | 5.4          | .e                    | છ             | 52    | 80                 | ક                |
|    | Dν              |                             | 5.0                   | °5          |            |                |            |                |             |              | 8.                    | કુ            |       |                    | હુ               |
| _  | Wet             | 1.22                        | 9.0                   | %           | 16:        | 0.5            | 43         | 01             | 99          | 3.4          | 2.0                   | ઙ             | 52    | %                  | 3                |
| _  | Dry             |                             | 6.0                   | 60          |            |                |            |                |             |              | 0.5                   | 09            |       |                    | ઙ                |
| _  | Wet             | 1.21                        | 1.1                   | 99          | 16.        | 2.0            | 43         | 51             | 09          | 5.4          | 5.2                   | 00            | 52    | %                  | 8                |
| _  | Z               |                             | 0.7                   | ક           |            |                |            |                |             |              | 51                    | ક             |       |                    | 8                |
|    | ta <sub>1</sub> | 1.22                        | 0.6                   | Ço          | 16.        | 12             | 43         | 7              | 95          | 3.4          | 12                    | œ             | 92    | 80                 | ડ                |
|    | Dry             |                             | 0.2                   | 89          | •          |                |            |                |             |              | 50                    | 9             |       |                    | ક                |
|    | Wet             | 1.22                        | 1.0                   | 8           | 16:        | 2.2            | 43         | O)             | ક           | 3.4          | 0.5                   | 8             | 92    | 04                 | 05               |
|    | 75              |                             | 0.5                   | ઝ           |            |                |            |                |             |              | L0                    | ઉ             |       |                    | 96               |
| _  | Llet            | 1.22                        | 0.4                   | ઙ           | 16.        | 2.0            | 43         | 15             | ઉ           | 3.4          | 92                    | 99            | 52    | 700Y               | 9 <del>6</del> ) |
|    | Dh              |                             | 2.0                   | ઝ           |            |                |            |                |             |              | 60                    | ભુ            |       |                    | ગુ               |
| _  | l⊾le¢           | 12                          | 9.0                   | Ĝo          | 16:        | 3.0            | 43         | 이              | 80          | 3.4          | 52                    | $\mathcal{F}$ | 52    | 26                 | ઝ                |
| _  | Ž               |                             | 0.4                   | Go          |            |                |            |                |             |              | 0                     | <i>ુ</i>      |       |                    | જ                |
|    | Wet             | 1.22                        | 1.0                   | %           | .21        | 2.0            | 43         | . 6            | 60          | 3.4          | 02                    | œ,            | 52    | ૦૬                 | 3 <b>5</b> )     |
|    | Dry             |                             | 0.0                   | 3           |            |                |            |                |             |              | <b>6</b> 0            | OS)           |       |                    | જ                |
|    | het             | 1.22                        | 2.5                   | Mo-GO       | ٤.         |                | 43         |                |             | 3.4          |                       |               |       |                    |                  |
|    | 7               |                             | 1.5                   | No-Go       |            |                |            |                |             |              |                       |               |       |                    |                  |
|    | met.            | 12                          | 3.5                   | NC-50       |            |                |            |                |             |              |                       |               |       |                    |                  |
|    | Z               |                             | 2.0                   | N6-GO       |            |                |            |                |             |              |                       |               |       |                    |                  |
|    | lue+            | 1.22                        | 0.4                   | B           | į.         | 2.0            | 43         | e              | Go          | 3.4          | 02                    | Co            | 52    | Rock               | જી               |
|    | Ã               |                             | 0.2                   | 50          |            |                |            |                |             |              | 0 1                   | روه           |       |                    | 99               |
|    | wet             | 1.22                        | 9.0                   | Ge          | 16.        | 3.0            | 43         | 9              | Go          | 5.4          | 0.2                   | ပိ            | 52    | 8                  | رود              |
|    | De              |                             | 0.4                   | Go.         |            |                |            |                |             |              | 0.1                   | ઝ             |       |                    | Ŗ                |
|    | LVEA            | 1.22                        | 1.2                   | જ           | <i>اد:</i> | 5.0            | 43         | د              | B           | 5.4          | 51                    | J9            | 52    | 26                 | ઝ                |
| _  | 74              |                             | 6.0                   | Go          |            |                |            |                |             |              | 50                    | જુ            |       |                    | ગ્રફ             |
|    | LVCt            | 1.22                        | 2.5                   | No.66       |            |                |            |                |             |              |                       |               |       |                    |                  |
|    | D.              |                             | 2.0                   | NO-60       |            |                |            |                |             |              |                       |               |       |                    |                  |

MOVEMENT ANALYSIS OF DRAINAGE FEATURES FOR M-60 TANK

|          |        |                      | Tree of               |              |            |                 |            |               |       |     |                |              |            |                   |       |
|----------|--------|----------------------|-----------------------|--------------|------------|-----------------|------------|---------------|-------|-----|----------------|--------------|------------|-------------------|-------|
|          | _      |                      | WATER DEFIN           | <u>.</u>     |            | BANK HEIGHT AND | HT AND B   | BANK SLOPE    |       | ۸W  | WATER VELOCITY | ).TV         | POTE       | POTTON CONDITIONS | TIONS |
| NO SEG   | SEASON | VEH<br>FORD<br>DEPTH | WATER<br>DEPTH<br>(m) | 05-0N        | VEH<br>(m) | BANK<br>HEIGHT  | VEH<br>A.A | BANK<br>SLOPE | 09-0N | VEH | WATER<br>VEL   | 66.<br>NO:60 | i OA       | BOTT<br>P.C.i     | 09 DN |
| ,        | the+   | 1.22                 | 0.6                   | კ            | <u>e</u>   | 0               | 43         | 2             | 9     | 2.4 | 00             | 3            | ¥          | 3                 | ļ     |
| 3        | Dry    |                      | 6.0                   | ક            |            |                 |            |               |       | 1   |                |              | 63         | 00                | 95)   |
|          | luet   | 1.12                 | 9:0                   | ઉ            | į.         | 3.0             | 43         | 2             | 89    | 3.4 | - C            | ر ا          | ×          | الم               | 3     |
| ر<br>ب   | Ã      |                      | 0.3                   | જી           |            |                 |            |               |       |     | 0.0            | 8            | 3          | 3                 | 3     |
| <u>-</u> | 3      | 12:1                 | ۱ ه                   | ૭            | Ŀ.         | 4.0             | 43         | 2             | 8     | 3.4 |                | 8 6          | K          | 2                 | 8 3   |
| ,        | ã      |                      | 9.0                   | <sub>6</sub> |            |                 |            |               |       |     | -              | ક            | 2          | Š                 | ċ     |
|          | Ee.    | 1.22                 | 5.0                   | og- g\       | 16.        |                 | B          |               |       | 3.4 |                | 3            |            |                   | 3     |
| <b>a</b> | 3      |                      | 3.0                   | 05. oN       |            |                 |            |               |       |     |                | T            |            |                   |       |
|          | Wet    | 1.2                  | 5.0                   | No.Go        | į.         |                 | 43         |               |       | 3.0 |                |              |            |                   | T     |
| ۵        | D.     |                      | 30                    | No.50        |            |                 |            |               |       |     |                |              |            |                   |       |
|          | 3      | 1.2                  | 25                    | No - Go      | હ          |                 | 43         |               |       | 3.0 |                |              |            |                   |       |
| د        | Ř      |                      | 3.5                   | No Go        |            |                 |            |               |       |     |                |              |            |                   |       |
|          | 33     | 1.22                 | 50                    | No-60        | 16.        |                 | 43         |               |       | 34  |                |              |            |                   | T     |
| ا ا      | Z      |                      | 3.0                   | No Go        |            |                 |            |               |       |     |                |              |            |                   |       |
|          | 33     | 1:0                  | 5.6                   | No Go        | 16.        |                 | 4          |               |       | 3.0 |                |              |            |                   |       |
| J        | 3      |                      | 3.5                   | No-Go        |            |                 |            |               |       |     |                |              |            |                   | T     |
|          | ţ      | 1.2                  | 1.0                   | βo           | 16:        | 4.0             | 43         | ñ             | - 6   | 77  | -              | 3            | ×          | ی                 | T,    |
| d        | λQ     |                      | 9.0                   | B            |            |                 |            |               |       |     | 200            | 3,           |            | 8                 | 8     |
|          | mer    | 1.21                 | 2.0                   | No -(50      | <u>c</u>   |                 |            |               |       |     |                | 3            | 1          | 1                 | 9     |
| اء       | Z      |                      | -5                    | No. Go       |            |                 |            |               |       |     |                |              |            |                   | T     |
|          | 3      | 1.11                 | 7.8                   | 1/10-Sc      | 6.         | -               |            |               |       |     |                |              |            |                   | T     |
| ಀ        | 34     |                      | 3.0                   | No.Go        |            |                 |            |               |       |     |                | $\uparrow$   | $\uparrow$ | Ť                 | T     |

Table 5 (Continued).

- C. Procedures for Constructing the Complex Overlay.\*
- Step 1. Decide which type of Complex Overlay is to be prepared, based on the type of CCM map to be produced. If only a wet season CCM map is to be produced, base the Complex Overlay on data for wet season conditions only. (The sample Complex Overlays in this part of the guide are for the wet season.) If a dry season CCM map or both wet and dry season maps are required, base the Complex Overlay on data for dry season conditions.

## Step 2.

- a. Take the film positive or the lithographic map and aerial photos out of the data base. Place them on a table. Take a clean sheet of frosted mylar, the same size as the film or lithographic map, and place it, frosted side up, on top of the film or litho map. Pin-register them or tape them together. Trace the corner tick marks on the mylar with a black fine-line pencil. Trace the neat line on the mylar lightly with a blue fine-line pencil.
- b. Look through the mylar to find the built-up areas. They will appear as clusters of building symbols or sometimes as tinted areas. Using a black fine-line pencil, draw an angular outline that will tightly enclose clusters of building symbols or tinted areas that cover an area larger than this circle .\*\* Color in these outlined areas with a

red fine-line pencil as in figure 9. (Aerial photos may be used to update the extent of the built-up areas.)

#### Step 3.

- a. Remove the mylar sheet (which will now be called the <u>Complex Overlay</u>). Pull the Vegetation Factor Overlay (figure 10) out of the Data Base. Put the Complex Overlay on top of the Vegetation Overlay. Pinregister (or match corner ticks and tape the sheets together).
- b. Trace all the lines of the Factor Overlay onto the Complex Overlay with a black fine-line pencil. Do not draw any lines through colored areas already on the Complex Overlay. If a new line nearly coincides with a line already drawn on the Complex Overlay, and the space between them is smaller than this ()\*\*\*, do not draw the new line.

<sup>\*</sup> Based on procedures devised by A.D. Hastings, Terrain Analysis Center, USAETL.

<sup>\*\*</sup> Represents an area of .25  $km^2$  at 1:50,000 scale (dia. 5.6 mm).

<sup>\*\*\* 100</sup> meters at 1:50,000 (2 mm dia.)



Figure 9. Sample Complex Overlay with Built-Up Areas Added



Figure 10. Sample Vegetation Factor Overlay

c. Referring to table 2, note all the vegetation map units that are NO GO. Color these in with a <u>yellow</u> fine-line pencil as in figure 11. Ignore areas smaller than this circle  $\bigcirc$ .

Step 4.

- a. Remove the Complex Overlay from the Vegetation Factor Overlay. Put the Vegetation Factor Overlay aside for later use. Pull the Watercourses and Water Bodies Factor Overlay (figure 12) out of the data base. Place the Complex Overlay (which now may have red areas, yellow areas, and black lines on it) on top of the Watercourses and Water Bodies Factor Overlay. Pin-register (or match corner ticks and tape).
- b. Trace and color in all drainage features shown as NO GO during the dry season in table 5 with a <u>blue</u> fine-line pencil as shown in figure 13. Trace all drainage features shown as NO GO only during the wet season in red.

Step 5.

- a. Remove the Complex Overlay from the Watercourses and Water Bodies Factor Overlay. Put this Factor Overlay aside for later use. Pull the <u>Surface Roughness Factor Overlay</u> (figure 14) out of the data base. Place the Complex Overlay on top of the Surface Roughness Overlay. Pinregister (or match corner ticks and tape).
- b. Trace all the lines of the Factor Overlay onto the Complex Overlay with a black fine-line pencil. Do not draw any lines through colored areas already on the Complex Overlay. If a new line nearly coincides with a line already drawn on the Complex Overlay and the space between them is smaller than this circle ( ), do not draw the new line.
- c. Look in table 3 and find all the NO GO Surface Roughness map units. Looking through the Complex Overlay, find any NO GO areas on the Surface Roughness Factor Overlay and color them in with a <u>yellow</u> fine-line pencil as in figure 14.
  - d. Trace all relief obstacles in red.

Step 6.

a. Remove the Complex Overlay from the Surface Roughness Overlay. Put the Surface Roughness Factor Overlay aside for later use. Puli the Slope Factor Overlay (figure 2) out of the data base. Pinregister (or match tick marks and tape).



Figure 11. Sample Complex Overlay with Built-Up Areas and Vegetation Added



Figure 12. Sample Watercourses and Water Bodies Factor Overlay



Figure 13. Sample Complex Overlay with Built-Up Areas, Vegetation, and Watercourses Added



Figure 14. Sample Complex Overlay with Built-Up Areas, Vegetation, Watercourses, and Surface Roughness Added

- b. Trace all the lines on the Factor Overlay onto the Complex Overlay with a <u>black</u> fine-line pencil. Do not draw any lines through colored areas already on the Complex Overlay. If a new line nearly coincides with a line already drawn on the Complex Overlay and the space between them is smaller than this circle ( ), do not draw the new line.
- c. Look in table 1 and find all the NO GO slope map units for the vehicle under consideration. Find these NO GO areas on the Complex Overlay. Color them in with a  $\underline{yellow}$  fine-line pencil as in figure 15.

# Step 7.

- a. Remove the Complex Overlay from the Slope Factor Overlay. Put the Slope Factor Overlay aside for later use. Pull the Soil Factor Overlay (figure 16) out of the data base. Pin-register (or match corner tick marks and tape).
- b. Trace all the lines on the Factor Overlay onto the Complex Overlay with a black fine-line pencil. Do not draw any lines through colored areas already on the Complex Overlay. If a new line nearly coincides with a line already drawn on the Complex Overlay and the space between them is smaller than this circle , do not draw the new line.
- c. Look in table 4 and find all the NO GO soils for the season (wet or dry) being considered. Find these NO GO areas that appear on the overlay. Color them in with a <u>yellow</u> fine-line pencil as in figure 17.

#### Step 8.

- a. Remove the Complex Overlay from the Soil Factor Overlay. Put the Soil Factor Overlay aside. The Complex Overlay now has many uncolored, irregularly shaped and sized areas formed by all the intersecting black lines drawn on it.
- b. Starting in the upper left corner of the Complex Overlay, number these uncolored areas from left to right, consecutively from 1 to 99, in such a way as to number a rectangular portion of the sheet (figure 18).
- c. Draw a heavy <u>black</u> pencil line around the border of the large rectangular area. This area is now Sector A. Label the sector by putting a letter A in a conspicuous spot, as in figure 18.

Note that figure 18 represents only a portion of a map sheet and therefore has only one lettered sector. Most Complex Overlays will have several hundred numbered areas and several sectors as shown in the diagram below.



Figure 15. Sample Complex Overlay with Built-Up Areas, Vegetation, Watercourses, Surface Roughness, and Slope Added



Figure 16. Sample Soil Factor Overlay



Figure 17. Sample Complex Overlay with Built-Up Areas, Vegetation, Watercourses, Surface Roughness, Slope, and Soil-Added



Figure 18. Sample Completed Complex Overlay with Area Numbers Added

d. Repeat the numbering and sectoring process until the overlay is covered. (The last sector may have less then 99 areas in it.) Label the sectors left to right, top to bottom, alphabetically, A - Z (figure 18 and below).



**Lettered Sectors** 

- D. Procedures for Computing Speeds.
- Step 1. On a separate piece of paper prepare a Speed Prediction Tabulation Sheet for each sector like that in table 6.

### Step 2.

- a. Retrieve the Slope Factor Overlay. Place the Complex Overlay on top of the Slope Factor Overlay (figure 2). Register.
- b. Go to Sector A, Area 1. Look through the Complex Overlay, (or pick up the corner) to see what slope map unit lies under Area 1. \* Record this map unit on the Speed Prediction Tabulation Sheet #1 on the row for Area 1 under the left slope column.
- c. Go to table 1 and find the  $S_1$  Factor that corresponds to the slope map unit for Area 1. Record this number on the row for Area 1 under the right slope column.
- d. Repeat steps b and c until all numbered Areas in Sector A are completed. (If it is discovered that an area was mistakenly not given a number, at this time simply assign it with the number of its left neighboring area plus a small letter, e.g. la. Insert la between 1 and 2 on the Speed Prediction Tabulation Sheet #1.)
- e. Repeat steps b and c for all remaining sectors until all the numbered areas on the overlay have been given  ${\sf S}_1$  values.

#### Step 3.

- a. Remove the Slope Factor Overlay from the Complex Overlay. Put the Slope Factor Overlay back in the data base.
- b. Retrieve the <u>Vegetation Factor Overlay</u>. Place the Complex Overlay on top of the Vegetation Factor Overlay. Register.
- c. Go to Sector A, Area 1. Look through the Complex Overlay, (or pick up the corner) to see what Vegetation Map unit lies under Area 1. Record this map unit on the Speed Prediction Tabulation Sheet on the row for Area 1 under the left vegetation column.

<sup>\*</sup> In some cases, a single area of the Complex Overlay may lie over parts of two map units on the factor overlay because of omission of lines that nearly coincide during the complexing phase. Use the factor map unit that occupies the greater portion of the complex area.

# SPEED PREDICTION TABULATION SHEET #1

| Sector A  SLOPE VEGETATION SURFACE SOIL CCM - Dry CCM - Wet  Area               |      |             |            |                |                |             |                |                |             |                                               |                 |                 |                 |          |          |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|-------------|------------|----------------|----------------|-------------|----------------|----------------|-------------|-----------------------------------------------|-----------------|-----------------|-----------------|----------|----------|--|--|
| [Avan]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SLO         | VEG  | ETA         |            | N              | SURF<br>ROUGH  |             | SC             | ЭIL            |             |                                               | CCM - Dry       | CCM - Wet       |                 |          |          |  |  |
| Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Map<br>Unit | Sı   | Map<br>Unit | F          | F <sub>2</sub> | S <sub>2</sub> | Map<br>Unit | F <sub>3</sub> | S <sub>3</sub> | Map<br>Unit | F <sub>4D</sub>                               | F <sub>4W</sub> | S <sub>4D</sub> | S <sub>4W</sub> | Map Unit | Map Unit |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В           | 40   | -           | 1          | _              | 40             | 4           | .5             | 20             |             | 1                                             | .56             | Zo              | ه.اد            | 3        | 4        |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | В           | 40   | 2           | 1.0        |                | 40             | 4           | .5             | 20             | <u>l</u>    | 1                                             | 55              | 10              | il.o            | 5        | 4        |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | В           | 40   | 10          | 1.0        |                | 40             | 4           | .5             | Zo             | ı           | 1                                             | 55              | 2               | ıl.o            | 3        | 4        |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | В           | 40   | 5           | <u> -</u>  | Ц              | 40             | 4           | .5             | 20             | ı           | 1                                             | 55              | 20              | ه.اا            | 3        | 4        |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | С           | 24   | 6           | .34        |                | 8.80           | 4           | .5             | 4.8            | 4           |                                               | .33             | 4.8             | 1.6             | 5        | 5        |  |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c           | 24   | 6           | .34        |                | 8.16           |             | -              | 8.6            | 4           | 1                                             | 33              | 8.6             | 2.7             | 4        | 5        |  |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Α           | 45.6 | 6           | .34        |                | 15.5           | 1           | $\overline{}$  | 15.5           | 4           | ı                                             | 33              | 155             | 5.1             | 4        | 5        |  |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | В           | 40   | 1           | _          | _              | 40             | ı           | -              | 40             | 4           | ١                                             | 37              | 40              | 15.2            |          | 4        |  |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | В           | 40   | 8           | .40        | L              | 16             | - 1         | _              | 10             | 4           | _                                             | 33              | .16             | 5.3             | 4        | 5        |  |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C           | 24   | В           | 40         | L              | 96             | 4           | .5             | 4.8            | 4           | 1                                             | 33              | 4.8             | 1.6             | 5        | 5        |  |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c           | 24   | 8           | .40        | _              | 96             | 1           | 1              | 96             | 4           | 1                                             | .33             | 9.6             | 3.2             | 4        | 5        |  |  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С           | 24   | 6           | 34         |                | 3 16           | 1           | 1              | 9.L            | 4           | 1                                             | .33             | 3.6             | 2.7             | 4        | 5        |  |  |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C           | 24   | 1           | Ŀ          | _              | 24             | 1           | L              | 24             | 4           | L                                             | 33              | 24              | 8.0             | 3        | 4        |  |  |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c           | 24   | 7           | _          | _              | 24             | 4           | .5             | 12             | 4           | 1                                             | 33              | 12              | 4.0             | 4        | 5        |  |  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A           | 45.6 | 10          | 1          |                | 45/            | <u> </u>    | 1              | 456            | 4           | <u> </u>                                      | .33             | 456             | 15              |          | 4        |  |  |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A           | 45.6 | 7           | _          | _              | 456            |             | ı              | 45,6           | 4           | 1                                             | 33              | 46b             | 15              | 1        | 4        |  |  |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A           | 45.6 | 7           | _          | _              | 456            | 1           | 1              | 456            | 4           | -                                             | .33             | 456             | 15              |          | 4        |  |  |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D           | .12  | 6           | .34        |                | 4.0            | 4           | .5             | 20             | 4           | ı                                             | 33              | 2.6             | مكار            | 5        | 5        |  |  |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D           | 12   | 6           | .34        |                | 4.0            | 6           | .2             | 0.1            | 4           | -                                             | .33             | 0.8             | .26             | 5        | 6        |  |  |
| Zo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В           | 40   | 3           | .92        |                | 2.8            | 4           | .5             | 10 A           | i           | 1                                             | .58             | 64              | 5.7             | 4        | 5        |  |  |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C           | 24   | 9           | 1          |                | 24             | 3           | .9             | 21.6           | 1           | 1                                             | 55              | 216             | 11.9            | 3        | 4        |  |  |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В           | 40   | 9           | _          | _              | 40             | 2           |                | 40             | 1           | <u>,                                     </u> | .55             | 40              | 22              | 1        | 3        |  |  |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D           | 12   | 10          | 1          | _              | 12             | 4           | .5             | 6              | 1           | 1                                             | .55             | 6               | 3.3             | 5        | 5        |  |  |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D           | 12   | 10          | 1          | L              | 12             | 1           | .1             | 1.2            |             | 1                                             | 55              | 1.2             | 0.7             | 5        | 5        |  |  |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D           | 12   | ıl          | .17        | L              | 20             | 4           | .5             | 1              | 5           | L                                             | $\perp$         | 1               | 1               | _ 5      | 5        |  |  |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D           | 12   | 11          | .17        | L              | 2.0            | 4           | .5             | 1              | 5           | L                                             | 1               | 1               | $\perp$         | 5        | 5        |  |  |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В           | 40   | ıl          | .17        |                | 6.9            | 4           | .5             | 3.4            | 5           | 1                                             | <u></u>         | 34              | 3.4             | _ 5      | 5        |  |  |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D           | 12   | -11         | .17        | L              | 2.0            | 4           | .5             | į.             |             | 1                                             | .55             | 1               | 55              | 5        | 5        |  |  |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D           | 12   | 14          | 1.         |                | 12             | 6           | .2             | 24             | 9           | L                                             | ٥.٤             | 2.4             | 24              | 5        | 5        |  |  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В           | 46   | 16          | _          | <u> -</u>      | 40             | 2           | 1              | 40             | 5           | 1                                             | ما              | 40              | 40              | 1        | 1        |  |  |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A           | 45.6 | 13          | <u> -</u>  | _              | 456            | 4           | .5             | 22.8           | 8           | 1                                             | .88             | 23              | 20              | 3        | 3        |  |  |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c           | 24   | 14          | 1.         |                | 24             | 4           | .5             | 12             | 9           | L                                             | 1.5             | 12              | 12              | 4        | 4        |  |  |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В           | 40   | 18          | 1.         |                | 40             | 1           | 1              | 40             | 7           | 1                                             | 33              | 40              | 13.2            |          | 4        |  |  |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B           | 46   | 17          | _          | Ŀ              | 40             |             | 1              | 40             | 8           | 1                                             | .88             | 40              | 35.2            |          | 2        |  |  |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Α           | 45.6 | 17          | <u> </u> = | _              | 454            | 1           | L              | 456            | 7           | 1                                             | .33             | 454             | 15              | - 1      | 4        |  |  |

Table 6. Sample Speed Prediction Tabulation Sheet #1

- d. Look in table 2 and find  $F_1$  or  $F_2$  that corresponds to the vegetation map unit under Area 1. Record this number on the row for Area 1 under the right vegetation column. (If there is no  $F_1$  or  $F_2$  value, record a dash).
- e. Find  $S_2$  by multiplying by  $F_1$  or  $F_2$ . Record the value for  $S_2$  on the row for Area 1 under the  $S_2$  column. (If there is no  $F_1$  or  $F_2$  value, then  $S_2$  equals  $S_1$ . Record the  $S_1$  value under the  $S_2$  column).
- f. Repeat steps c, d, and e until all numbered areas in Sector A are given vegetation numbers on the tabulation sheet.
- g. Repeat steps c, d, and e for all remaining sectors until all numbered areas on the overlay have been given  $S_2$  values on the tabulation sheet.

Step 4.

- a. Remove the Vegetation Factor Overlay and return it to the data base.
- b. Retrieve the <u>Surface Roughness Factor Overlay</u>. Place the Complex Overlay on top of the Surface Roughness Factor Overlay and register.
- c. Go to Sector A, Area 1. Look through the Complex Overlay (or pick up the corner) to see what Surface Roughness map unit lies under Area 1. Record this map unit on the Speed Prediction Tabulation Sheet #1 on the row for Area 1 and under the left surface roughness column.
- d. Look in table 3 and find  $F_3$  that corresponds to the Surface Roughness map unit under Area 1. Record this number on the row for Area 1 under the right Surface Roughness column.
- e. Multiply  $F_3$  by  $S_2$  to find  $S_3$ , i.e.,  $S_3 = F_3 \times S_2$ . Record the value for  $S_3$  in the row for Area 1 under the  $S_3$  column.
- f. Repeat steps c, d, and e until all areas in Sector A have been given  $S_3$  value numbers.
- g. Repeat steps c, d, and e for all remaining sectors.

Step 5.

a. Remove the  $\underline{\text{Surface Roughness Factor Overlay}}$  and put it back in the data base.

- b. Retrieve the <u>Soil Factor Overlay</u> and place the Complex Overlay on top of it. Register.
- c. Go to Sector A, Area 1. Look through the Complex Overlay (or pick up the corner) to see what soil map unit lies under Area 1. Record this map unit on the Speed Prediction Tabulation Sheet #1 on the row for Area 1 and under the left soil column.
- d. Look in table 4 and find  $F_{4D}$  that corresponds to the soil map unit under Area 1. Record this number on the Speed Prediction Tabulation Sheet #1 (table 6) on the row for Area 1 under the right soil column. Then do the same for  $F_{4W}$  if a wet season CCM map is required.
- e. Multiply  $F_{4D}$  by  $S_3$  to find  $S_{4D}$ , i.e.,  $S_{4D} = S_3 \times F_{4D}$ . Round off the answer to the nearest whole number, e.g. 8.50 = 9 and 8.49 = 8. Record the value for  $S_{4D}$  in the row for Area 1 under the  $S_{4D}$  column. Then do the same for  $F_{4W}$  to find  $S_{4W}$ .
- f. Repeat steps c, d, and e until all areas in Sector A have been given  $S_{4D}$  and/or  $S_{4W}$  values.
  - g. Repeat steps c, d, and e for all remaining sectors.
- Step 6. Categorize the  $S_{4D}$  and  $S_{4W}$  values into CCM map units according to table 7, and record in the CCM map unit columns of the Speed Prediction Tabulation Sheet #1 (table 6).

Table 7. Categoires for Speeds and CCM Map Units

| r             | <del>,</del> | <del>,                                     </del> |
|---------------|--------------|---------------------------------------------------|
| SPEEDS (kph)  | CLASS        | CCM MAP UNIT #                                    |
| >40           | Excellent    | 1                                                 |
| 33-40         | Very Good    | 2                                                 |
| 17-32         | Good         | 3                                                 |
| 8-16          | Fair         | 4                                                 |
| .5-7          | Poor         | 5                                                 |
| <.5           | NO GO        | 6                                                 |
| Built-up Area | NO GO        | 7                                                 |

## Step 7.

- a. Place a clean sheet of frosted mylar on the CCM dry season  $\underbrace{\text{Complex Overlay}}_{\text{Corner tick marks with a black}}_{\text{Corner line pencil}}$  Pin-register (or tape) the sheets together. Trace the corner tick marks with a black fine-line pencil. Trace the neat line lightly with a blue fine-line pencil. If a CCM dry season map is desired, continue to Step 7b. If a CCM wet season map is desired, go NOW to Step 8.
- b. Trace the outline of all red areas with a black pencil. Label them with the map unit number 7.
- c. Trace all dry season water obstacles with a black outline and a blue fill. Single line streams may be all blue.
- d. Over each numbered area showing through the mylar, write the dry season CCM map unit number for that area.
- e. Trace the outlines of all numbered areas with a  $\underline{black}$  pencil, omitting lines between areas with the same map unit number.
- f. Trace the outlines of all yellow areas, omitting lines between adjacent yellow areas. Label them with the map unit number 6.
  - g. Trace with a red fine-line pencil all relief obstacles.
- h. Match all four sides of the last sheet of mylar, now called the CCM dry season maunscript with the completed manuscripts for the adjoining map sheets. Make sure that continuing map units do, indeed, continue onto the next sheet.
- i. Place the legend in the appropriate place on the CCM manuscript as indicated in figure 19.

#### Step 8.

- a. Place a clean sheet of mylar on top of the CCM Complex Overlay. Trace corner ticks with a <u>black</u> fine-line pencil, and neat lines with a blue fine-line pencil.
- b. Trace the outline of all red areas in black. Label them with the map unit number 7.
- c. Trace all wet season water obstacles with a black outline and a blue fill. Single line streams will be all blue.
- d. Over each numbered area showing through the mylar, write the CCM wet season map unit number for that area.

- e. Trace the outlines of each numbered area in black, omitting lines between areas with the same map unit number.
- f. Trace the outlines of all yellow areas, omitting lines between adjacent areas. Label them with the map unit number 6.
  - g. Trace all relief obstacles in red.
- Step 9. Match all four sides of the last sheet of mylar, now called the CCM wet season manuscript, with the completed CCM wet season manuscripts for the four adjoining map sheets. Make sure that continuing map units do, indeed, continue onto the next sheet.
- Step 10. Place the legend in the appropriate place on the CCM manuscript as indicated in figure 19.



Figure 19. Sample Completed CCM Manuscript

# III. Mathematical Model Approach Using Programable Calculator (HP-97)\*

## A. Introduction

The mathematical model shown in figure 1, which yields an expected maximum vehicle speed for specific terrain, can be put into a programable calculator, such as the HP-97 (see program flow chart, table 14). In the next section, instructions are given for using the programable calculator in the synthesis process.

The following diagram summarizes and illustrates the steps in the next section:

# Flow Diagram

Do Movement Analysis of Drainage.



<sup>\*</sup> Other programable calculators may be used.



Prepare Speed Prediction Tabulation Sheet #2 and Enter Data onto It from Factor Overlays and Factor Complex Overlay.







Program the Calculator, Enter Data From Speed Prediction Tabulation Sheet #2, Calculate Speeds.



Assign Speed Categories to Each Map Unit, Trace Complex Overlay, and Complete CCM Manuscript.



### B. Procedures

- Step 1. Perform a movement analysis of drainage features as required in section II B, Step 10.
- Step 2. Prepare a Factor Complex Overlay as required in section II. Show built-up areas and drainage obstacles, but do not show other NO GO areas. It is not necessary to compute  $S_1$  or any of the F values at this time.
- Step 3. On a separate sheet of paper, prepare a Speed Prediction Tabulation Sheet #2, as in table 8.

Step 4.

- a. Retrieve the Slope Factor Overlay. Place the Complex Overlay on top of the Slope Factor Overlay. Register.
- b. Go to Sector A, Area 1 on the Complex Overlay. Look through the Complex Overlay (or pick up the corner) to see what slope map unit lies under Area 1. Record this map unit on the Speed Prediciton Tabulation Sheet #2 on the row for Area 1 under the left Slope column. Under the right Slope column, labeled "value", write the highest value for that map unit. For example, slope map unit A may include slopes from 0 to 3 percent. In this case, record A in the left Slope column, and 3 in the right Slope column as in table 8.
  - c. Repeat Step b above for the remaining areas in Sector A.
- d. Repeat Step b and c above for the remaining sectors on the Complex Overlay.

Step 5.

- a. Remove the Slope Factor Overlay from the Complex Overlay. Put the Slope Factor Overlay back in the data base.
- b. Retrieve the Vegetation Factor Overlay and Vegetation Data Table 1. Place the Complex Overlay on top of the Vegetation Factor Overlay. Register.
- c. Go to Sector A, Area 1. Look through the Complex Overlay, (or pick up a corner) to see what Vegetation Map Unit lies under Area 1. Record this map unit in the row for Area 1 under the left Vegetation column on the Speed Prediction Tabulation Sheet #2. Look on the Vegetation Data Table 1 and find the stem spacing value and the mean stem diameter value for that map unit. Convert the stem diameter value from centimeters to meters, i.e. 18 cm = .18 m. Record these values in their proper columns in the row for Area 1 on the Speed Prediction Tabulation Sheet #2, table 8.

SECTOR A

| CCM Map Unit Number | Wet                     | 17   | 4    | 77   | ŧ   | 5   | ک                | 5   | 7    | 5   | 5   | S   | 5   | 4    | 5              | 4    | 17   | 7    | S   | 9             | 5    | - 4        | 3        |
|---------------------|-------------------------|------|------|------|-----|-----|------------------|-----|------|-----|-----|-----|-----|------|----------------|------|------|------|-----|---------------|------|------------|----------|
| CCM Map L           | Dny                     | 8    | 8    | 3    | 3   | n   | 5                | †   | -    | 77  | Ŋ   | 4   | 17  | 3    | 7              | 1    | ı    | 1    | S   | S             | ħ    | ε          | 0        |
| Speed               | Wet<br>(Kph)            | 11   | [1   | 11   | 1.1 | _   | 3                | 5   | દા   | 5   | 8   | 3   | 3   | 8    | 7              | 51   | 51   | 51   | ı   | & <b>e</b> .0 | 7    | <u>لاع</u> | ee<br>ee |
| Sp                  | Dry<br>(Kph)            | 00   | 90   | ૦૯   | 30  | 4   | ১                | 91  | 9    | 2/  | 5   | 01  | 8   | 17C  | ष्ट।           | 917  | 947  | 97   | צ   | 1             | 01   | ಆಆ         | 5        |
|                     | RCI<br>Wet              | 25   | ઝ    | 95   | 95  | 아   | O <del>1</del> 7 | 94  | 07   | 017 | 04  | 047 | 97  | 04   | c <del>/</del> | 047  | 047  | 017  | 04  | 640           | 95   | 8          | 20       |
| Soil                | RCI<br>Dry              | 951  | Æ!   | SE)  | 130 | Sei | 501              | 581 | ક્લા | 561 | 501 | SEI | se। | 135  | 501            | SEI  | 501  | 125  | 125 | 125           | 130  | 130        | 130      |
|                     | Map<br>Unit             | ı    | 1    | 1    | 1   | 17  | <b>h</b>         | +   | 17   | h   | 7   | 7   | h   | 77   | 4              | 4    | 4    | 17   | 7   | 4             | 1    | -          | _        |
| Surface Roughness   | Factor                  | 5    | ·S.  | .5   | 5.  | 5.  | 1                | l l | 1    | ſ   | s'  | 1   | 1   | 1    | 5'             | J    | 1    | 1    | .5  | ٠2            | .5   | ٥.         | _        |
| Surface R           | Map<br>Unit             | 4    | 7    | 4    | h   | 47  | - 1              | 1   | t t  | 1   | 4   | 1   | 1   | 1    | 4              | -    | ı    | 1    | 4   | 9             | 4    | 3          | 8        |
|                     | Stem<br>Diameter<br>(m) | (2)  | الح. | 60   |     | 9e. | 96.              | 90. | (S)  | 04. | 04. | 94. | 7E. | (5)  | (5)            | 09.  | (5)  | (5)  | JS. | اه.           | . 25 | ં .        | છ        |
| Vegetation          | Stem<br>Spacing<br>(m)  | (30) | 17.1 | 15.7 |     | 4.4 | 4.4              | 6.9 | (%)  | 2.0 | 7.0 | 2.0 | 4.9 | (36) | (30)           | 15.7 | (30) | (36) | 4.9 | 6.4           | 7.6  | (5.7       | (30)     |
| Vege                | Map<br>Unit             | 1    | ત    | 01   | 5   | 9   | 9                | 9   | 7    | ક   | 8   | 8   | و   | 7    | 7              | 0/   | 7    | 7    | بو  | 6             | 3    | 10         | 6        |
| Slope               | 8                       | 10   | /0/  | 10   | 10  | 30  | 30               | 3   | 10   | 10  | 30  | 30  | 30  | 30   | 30             | 3    | 3    | 3    | 45  | 45            | ġ    | 3,         | <u>o</u> |
| Sic                 | Map<br>Unit             | 8    | В    | 89   | В   | J   | _ >              | Ð   | В    | В   | C   | _ C | J   | U    | U              | Ð    | Œ    | Ð.   | Δ   | Q             | В    | J          | 2        |
|                     | Area<br>Number          | _    | ٦    | η    | 4   | 5   | 9                | 7   | ۴    | 9   | 0   | 1.1 | 12  | 13   | 14             | 15   | 12   | 17   | 80  | 19            | 8    | ٦٢         | 23       |

Table 8. Sample Speed Prediction Tabulation Sheet #2 for M60 Tank

(If there is no stem spacing or stem diameter value owing to the absence of trees, record a value of 30 for stem spacing and 5 for stem diameter on Speed Prediction Tabulation Sheet #2.)

d. Repeat Step 5c for all areas in Sector A, and then for all sectors on the Complex Overlay.

Step 6.

- a. Remove the Vegetation Factor Overlay and put it back in the data base.
- b. Retrieve the Soil Factor Overlay and place the Complex Overlay on top of it.
- c. Go to Sector A, Area 1. Look through the Complex Overlay (or pick up a corner) to see what soil map unit lies under Area 1. Record this map unit on the Speed Prediction Tabulation Sheet #2 on the row for Area 1 in the proper column under Soil. Find this map unit on the Soil Data Table and record the values for  ${\rm RCI}_{\rm D}$ , and  ${\rm RCI}_{\rm W}$  on the Speed Prediction Tabulation Sheet #2 in the appropriate columns under Soil.
- d. Repeat 6c for all areas in Sector A, and then for all areas in each of the other sectors on the Complex Overlay.
- e. Remove the Soil Factor Overlay and put it back in the data base.

Step 7.

- a. Take the Program Card (for the vehicle concerned) out of the Program Card Packet (figure 20). Handle the Program Card with care; do not fold, spindle, or mutilate. If there is no Program Card for the vehicle concerned in the Packet, go NOW to Step 12.
  - b. Slide the OFF-ON button on the HP-97 to ON (figure 21).
  - c. Slide the PRGM-RUN button to RUN (figure 21).
  - d. Slide the MAN-TRACE-NORM button to MAN (figure 21).
- e. Hold the Program Card with the white side up, and insert side 1 (figure 20) into the card reader slot (figure 21) as shown in figure 22. When it is partially into the slot, the machine will take the card. After it is fed automatically through the machine, the card will emerge from a slot at the back of the machine.



Figure 20. CCM Program Card For the XM-1 and M-60 Tanks



Figure 21. HP-97 Calculator (Source: The HP-97 Programmable Printing Calculator Owner's Handbook and Programming Guide, 1977)



Figure 22. Inserting Program Card Into Card Reader Slot (Source: The HP-97 Programmable Printing Calculator Owner's Handbook and Programming Guide, 1977)



Figure 23. Inserting Program Card Into Window Slot (Source: The HP-97 Programmable Printing Calculator Owner's Handbook and Programming Guide, 1977)



Figure 24. Specific Vehicles Printed on the Program Card

- f. When the card appears and after the feed motor stops running, take the card out of the calculator.
  - q. Insert side 2 into the card reader slot.
- h. After the card appears at the back, slide it carefully into the window slot (figure 21) as shown in figure 23.

Step 8.

- a. If a CCM dry season map is required, complete Step 8. If a CCM wet season map is required, go NOW to Step 11.
- b. Press the letter (A, B, C, or D) that lies under the vehicle of interest printed on the Program Card (figure 24). The display window will flash for a few moments and then a value will appear. Ignore this value.
- c. Starting with Sector A, Area 1, read the slope value from the Speed Prediction Tabulation Sheet #2 (table 8). Enter this value into the calculator by pressing the appropriate number keys.
- d. Press the R/S button. The display window will flash and a value will appear. Ignore this value.
- e. Read the mean stem diameter for Sector A, Area 1, from the Speed Prediction Tabulation Sheet #2 (table 8). Enter this value by pressing the appropriate number keys.
- f. Press the R/S button. A value will appear in the display window. Ignore this value.
- g. Read the stem spacing value for Sector A, Area 1 from the Speed Prediction Tabulation Sheet #2 (table 8). Enter this value by pressing the appropriate number keys.
- h. Press the R/S button. The display will flash until a value appears. Ignore this value.
- i. Read the surface roughness factor for Sector A, Area 1 from the Speed Prediction Tabulation Sheet #2 (table 8). Enter this value by pressing the appropriate number keys.
- j. Press the R/S button. The display will flash until a value appears. Ignore this value.
- k. Read the RCI-DRY value for Sector A, Area 1 from Speed Prediction Tabulation Sheet #2 (table 8). Enter this value by pressing

the appropriate number keys.

- 1. Press the R/S button.
- m. The value appearing in the display is the speed for dry conditions. Values .5 and greater are automatically rounded-off to the nearest whole number, e.g. .5 would be rounded-off to 1. Values less than .5 appear in the display in scientific notation, e.g. 0.28 would look like 2.800000000 -01. The -01 indicates that the decimal point be moved 1 placed to the left to give .28. The number .28 should be entered on the Speed Prediction Tabulation Sheet #2. Record this value in the DRY SPEED column on the Speed Prediction Tabulation Sheet #2 (table 8).
- n. Look in table 7 to determine the dry season CCM map unit number for the above speed. Record this map unit number in the appropriate column on the Speed Prediction Tabulation Sheet #2 (table 8).
- o. Repeat Steps 8b through 8n for all areas in all sectors. Step 9.
- a. Place a clean sheet of frosted mylar over the Complex Overlay. Pin-register (or tape) the sheets together. Trace the corner tick marks with a black fine-line pencil. Trace the neat line lightly with a blue fine-line pencil.
- b. Using a <u>black</u> fine-line pencil, lightly trace the outlines for each area from the Complex Overlay.
- c. Over each area in each sector showing through the mylar, write the dry season CCM map unit number for that area.
  - d. Trace the drainage obstacles in dark blue.
- e. Erase any lines between areas with the same dry season CCM map unit number.
- f. Label NO GO areas showing through the mylar with the dry season CCM map unit number 6.
- g. Label red areas showing through the mylar with the dry season CCM map unit number  $7. \,$
- Step 10. Add the legend and other marginal information as shown in figure 19.

# Step 11.

- a. If a CCM wet season map is required, complete Step 11. If not, ignore Step 11.
  - b. Follow Part III, Steps 8b through 8j above.
- c. Read the RCI-WET value for Area 1, Sector A from the Speed Prediction Tabulation Sheet #2 (table 8). Enter this value into the calculator by pressing the appropriate number keys.
  - d. Follow Part III, Steps 81 through 8n.
  - e. Repeat III, Steps 11b through 11d for all areas in all sectors.
- f. Follow Part III, Steps 9 through 10, substituting "wet season CCM" for "dry season CCM".

#### Step 12.

- a. If these is no Program Card (figure 20) for the vehicle(s)\* of interest, and there are no blank cards, proceed with this step. Otherwise, go NOW to Step 13.
  - b. Make a list of the following vehicle specifications:

Maximum Road Gradability in percent. Maximum Road Speed in kilometers per hour (kph) or miles per hour (mph). Vehicle Width in meters. Maximum Override Diameter in meters at breast height. Vehicle Cone Index, one pass (VCI $_1$ ). Vehicle Cone Index, 50 passes (VCI $_{50}$ ). Subtract VCI $_1$  from VCI $_{50}$  (VCI $_{50}$  - VCI $_1$ ).

- c. Slide the OFF-ON button to ON (figure 21).
- d. Slide the MAN-TRACE-NORM button to MAN (figure 21).
- e. Slide the PRGM-RUN button to PRGM (figure 21).

<sup>\*</sup> Up to four vehicles can be stored on one card.

| LBL |                                                                                    |  |  |  |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| A } | Identifies the selected vehicle, e.g. XM-1                                         |  |  |  |  |  |  |  |  |
| 3   |                                                                                    |  |  |  |  |  |  |  |  |
|     | Width in meters for selected vehicle, e.g.                                         |  |  |  |  |  |  |  |  |
| 6   | 3.65 for XM-1 (table 9)                                                            |  |  |  |  |  |  |  |  |
| 5   |                                                                                    |  |  |  |  |  |  |  |  |
| STO |                                                                                    |  |  |  |  |  |  |  |  |
| 1   |                                                                                    |  |  |  |  |  |  |  |  |
| 7   | Max road speed in kph for selected vehicle.                                        |  |  |  |  |  |  |  |  |
| 1   | Max road speed in kph for selected vehicle, e.g. 71.0 for XM-1 (table 9)           |  |  |  |  |  |  |  |  |
| STO |                                                                                    |  |  |  |  |  |  |  |  |
| 2   |                                                                                    |  |  |  |  |  |  |  |  |
| · ) |                                                                                    |  |  |  |  |  |  |  |  |
| 2   | Vehicle override diameter in meters for selected vehicle, e.g25 for XM-1 (table 9) |  |  |  |  |  |  |  |  |
|     |                                                                                    |  |  |  |  |  |  |  |  |

STO 3 8 Max road gradability in percent for selected vehicle, e.g. 68.7 for XM-1 (table 9) 7 STO 4 2  $VCI_1$  value for selected vehicle, e.g. 24 for XM-1 (table 9) 4 STO D (VCI -  $VCI_1$ ) value for selected vehicle, e.g. (56 - 24) = 32 for XM-1 (table 9) 2 STO



\*---\* Skip this section if only one vehicle is required on the program card.

| 1 5 | Vehicle override diameter in meters for selected vehicle, e.g15 for M6OAl (table 9)            |  |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| STO |                                                                                                |  |  |  |  |  |  |
| 3   |                                                                                                |  |  |  |  |  |  |
| 6   | Max road gradability in percent for the selected                                               |  |  |  |  |  |  |
| 0   | vehicle, e.g. 60 for M60Al (table 9)                                                           |  |  |  |  |  |  |
| STO |                                                                                                |  |  |  |  |  |  |
| 4   |                                                                                                |  |  |  |  |  |  |
| 2   | $	extsf{VCI}_1$ value for the selected vehicle, e.g25                                          |  |  |  |  |  |  |
| 5   | for M60Al (table 9)                                                                            |  |  |  |  |  |  |
| STO |                                                                                                |  |  |  |  |  |  |
| D   |                                                                                                |  |  |  |  |  |  |
| 5   | $VCI_{50}$ - $VCI_1$ ) value for the selected vehicle, e.g. (70 - 25) = 45 for M6OA1 (table 9) |  |  |  |  |  |  |



<sup>\*\*--\*\*</sup> Skip this section if only one or two vehicles are required on the program card

| STO |                                                                                              |
|-----|----------------------------------------------------------------------------------------------|
| 2   |                                                                                              |
|     | Vehicle override diameter in meters for selected                                             |
| 1   | vehicle, e.g1 for M-113 (table 9)                                                            |
| STO |                                                                                              |
| 3   |                                                                                              |
| 6   | Max road gradability in percent for the selected                                             |
| 0   | vehicle, e.g. 60 for M-113 (table 9)                                                         |
| STO |                                                                                              |
| 4   |                                                                                              |
| 2   | VCI <sub>1</sub> value for selected vehicle, e.g. 20 for                                     |
| 0   | M-113 (table 9)                                                                              |
| STO |                                                                                              |
| D   |                                                                                              |
| 2   | $(VCI_{50} - VCI_1)$ value for selected vehicle, e.g.                                        |
| 7   | ( $VCI_{50}$ - $VCI_1$ ) value for selected vehicle, e.g. (47 - 20) = 27 for M-113 (table 9) |

| STO     |                                                 |
|---------|-------------------------------------------------|
| E       |                                                 |
| GTO     |                                                 |
| 1       |                                                 |
| LBL *** | *                                               |
| D }     | Identifies a fourth vehicle, e.g. T-72          |
| 3       |                                                 |
|         | Width of above vehicle in meters, e.a. 3.38     |
| 3       | for T-72 (table 9)                              |
| 8       |                                                 |
| ѕто     |                                                 |
| 1       |                                                 |
| 6       | Max road speed of selected vehicle in kph, e.g. |
| 0       | 60 for T-72 (table 9)                           |
| STO     |                                                 |
| 2       |                                                 |

| Vehicle override diameter in meters, e.g18 for T-72 (table 9)                           |
|-----------------------------------------------------------------------------------------|
| STO                                                                                     |
| 3                                                                                       |
| Max road gradability in percent for selected vehicle, e.g. 62.5 for T-72 (table 9)      |
| STO  4  VCI <sub>1</sub> value for selected vehicle, e.g. 45 for T-72 (table 9)  STO  D |

 $(VCI_{50} - VCI_1)$  value for selected vehicle, e.g. (60 - 45) = 15 for T-72 (table 9)

STO

Ε

LBL

1

R/S

RCL

4

÷

1

\_

CHS

RCL

X

STO

5

STO

0

R/S

STO

6

R/S

STO

7

ENTER 1

RCL

6

\_

RCL

-

ENTER 1

RCL

1

ENTER 1

2

X

÷

STO

8

RCL

3

ENTER 1

RCL

f

X>Y?

GTO

2

x<sup>2</sup>

RCL

1

X

RCL

3

X<sup>2</sup>

RCL

7

X

**.** 

CHS

+

RCL

8

f

x > 0?

GTO

3

x≠Y

f

X>0?

GTO

Λ

CLX

STO

GTO

9

LBL

2

RCL

8

1

f

X ≤ Y?

GTO

9

X≠Y

f

X < 0?

0

RCL

X

STO

0

GTO

9

LBL

3

f

x > 0?

GTO

5

CLX

1

f

X ≤ Y?

GTO

9

X ≓ Y

RCL

5

Χ

STO

0

GTO

9

LBL

Λ

1

f

X≤Y?

GTO

CLX

RCL

5

X

STO

0

GTO

9

LBL

5

1

£

X ≤ Y?

GTO

RCL

5

X

STO

0

LBL

9

R/S

RCL

0

X

STO

0

R/S

ENTER 1

RCL

D

-

RCL

E

÷

1

X = Y

f

X > Y?

X = Y

RCL

0

Х

f

x < 0?

CLX

**DSP** 

0

RTN

- g. Slide the PRGM-RUN button to RUN.
- h. Follow Steps 8 through 11.

Step 13.

- a. If there is no Program Card (figure 20) for the vehicle of interest, but there is a blank Program Card, proceed as follows.
  - b. Follow Part III, Steps 12b through 12f.
  - c. Slide the PRGM-RUN button to PRGM.
- d. Insert the blank Program Card into the card reader slot as shown in figure 22 and explained in Part III, Steps 7e through 7h. The card now holds the Program for the vehicle of interest. Label the card with the vehicle identification number using a felt-tip pen or pencil that will not emboss the card.
  - e. Follow Steps 8 through 11.

## IV. Qualitative Method - No-Model Approach

### A. Introduction

G0

This method \* presents only three categories of Cross-Country Movement.

NO GO Movement precluded except in local areas, or so difficult and tortuous that progess is essentially nil.

SLOW GO Movement restricted or significantly slowed by obstacles that require bypassing, zigzagging, or detouring.

Movement mostly free and easy. At least moderate speeds can be maintained for relatively long distances. Few, if any, time-consuming detours required to avoid obstacles.

To obtain these categories, all the factor overlays are examined for clearly NO GO and GO areas. These areas are transferred to the Complex Overlay. Then the factor overlays are re-examined with the aid of available maps, air photos, or literature to determine the nature of the SLOW GO areas, and perhaps extend the GO and NO GO areas.

With this method, a CCM map may be produced in less time than with the model methods, but the movement categories will be more general and qualitative.

<sup>\*</sup> Method is based on one developed by A.H. Reimer and H.F. Barnett, USAETL TAC.

#### B. Procedures

## Step 1.

- a. Determine for what vehicle the CCM map is being prepared.
- b. Obtain the following specifications for that vehicle from table 9:

Maximum slope (road gradability) (percent). Maximum fording depth (m) (with or without snorkel). Approach angle (degrees). Vehicle width (m). Vehicle override diameter (m). Vehicle cone index, 50 passes ( $VCI_{50}$ ).

c. Record this information on a reference table like the following:

#### **VEHICLE TYPE ~ M-60**

| Maximum Slope (Road Gradability) (%)               | 60   |
|----------------------------------------------------|------|
| Maximum Fording Depth (m)                          | 1.22 |
| Approach Angle (°)                                 | 43   |
| Vehicle Width (m)                                  | 3.63 |
| Vehicle Override Diameter (m)                      | 0.15 |
| Vehicle Cone Index, 50 passes (VCI <sub>50</sub> ) | 70   |

#### Step 2.

- a. Take the film positive or the lithographic map and the aerial photos out of the data base. Place them on a table. Take a clean sheet of frosted mylar, the same size as the film or lithographic map, and place it, frosted side up, on top of the film or lithographic map. Pin-register them or tape them together. Trace the corner tick marks on the mylar with a black fine-line pencil. Trace the neat line on the mylar lightly with a blue fine-line pencil.
- b. Look through the mylar to find built-up areas. They will appear as clusters of building symbols or sometimes as tinted areas. Using a black fine-line pencil, draw an angular outline that will tightly enclose clusters of building symbols or tinted areas that cover an area larger

than this circle .\* This sheet of mylar is now known as the <u>Complex</u> <u>Overlay</u>. Mark the built-up areas with the letter "N".

Step 3.

- a. Remove the Complex Overlay.
- b. Pull the <u>Vegetation Factor Overlay</u> and <u>Vegetation Data Table 1</u> out of the data base. Register the Complex Overlay over the Factor Overlay.
- c. Referring to Vegetation Data Table 1 and the table made in Step 1, note the map units with stem spacing equal to or less than the width of the vehicle. Trace the outlines of these map units with a <u>black</u> fine-line pencil.
- d. Referring again to Vegetation Data Table 1 and the table made in Step 1, trace the outlines of all the vegetation areas that have mean stem diameters greater than the maximum vehicle override diameter.
- e. Mark all the overlapping areas outlined in Steps 3c and d with the letter "N", which represents NO GO.
- f. Trace the outlines of all the areas that have no trees, small trees (less than the maximum vehicle override diameter) or brush, or widely spaced trees (stem spacing greater than the vehicle width). Mark these areas with a "G", representing GO. If these areas should overlap an "N" area, change the "G" in the overlapped section to "N".

Step 4.

- a. Replace the Vegetation Overlay with the <u>Watercourses and Water Bodies Factor Overlay</u>. Register.
- b. Referring to the table made in Step 1, and the Watercourses and Water Bodies Data Tables 1 and 2, trace in blue all drainage reaches that have depths greater than the maximum vehicle fording depth, approach angles greater than the maximum for the vehicle, and any of the bottom conditions with  ${\rm RCI}_{\rm wet}$  listed in table 11 that are less than  ${\rm VCI}_{50}$ . Mark these areas with an "N".
- c. Trace the outlines of all swamps and marshes in blue. Label these with an "N".

<sup>\*</sup> Represents an area of 0.25 km² at 1:50,000 scale.

#### Step 5.

- a. Replace the Watercourses and Water Bodies Factor Overlay with the <u>Surface Roughness Factor Overlay</u>. Trace the outline of all map unit Areas 8. Label these with an "N". If these overlap an area marked "G", be sure to change the "G" area boundary to exclude the "N" area.
- b. Trace the outline of all map unit Areas l. Label these with a "G". If these overlap with an "N" area already on the Complex Overlay, be sure to change the "G" area boundary to an "N" area for that overlapped space.

#### Step 6.

- a. Replace the Surface Roughness Overlay with the Slope Factor Overlay. Trace the outline of the areas with slopes greater than the vehicle maximum slope. Label these areas with an "N". An "N" overlapping a "G" becomes an "N" for that overlapped spaced.
- b. Trace the outline of the areas with slopes less than 10 percent. Label these with a "G". If the "G" overlaps an "N" area already on the Complex Overlay, the overlapped space remains an "N".

#### Step 7.

- a. Replace the Slope Factor Overlay with the <u>Soil Factor Overlay</u>. Trace outlines of all OL, OH, and Pt soil categories. Label these with an "N". Any "N" overlapping a "G" becomes an "N".
- b. For Wet Conditions, follow Step 7a, but add all ML and CL soil categories. Label with an "N".
- c. Trace outlines for all GW, GP, GM, and GC soil categories. Label these with a "G". Any "G" overlapping an "N" becomes an "N" for that overlapped space.
- Step 8. Remove the Complex Overlay. On the Complex Overlay, combine adjoining areas having the same letter.

#### Step 9.

a. The remaining space on the Complex Overlay is probably SLOW GO. Label the remaining areas on the Complex Overlay "S" for SLOW GO. If aerial photos, maps, or literature are available, they should be examined for the areas labeled SLOW GO to see if there may be some GO and NO GO areas included in them. For example, air photos or written descriptions in the literature may reveal highly dissected terrain that might

make part of the area NO GO, or reveal sand dunes stabilized by enough vegetation to make part of the area GO. Use the Qualitative Thresholds for CCM (table 13) to help locate these extra NO GO and GO areas. The "Good" movement condition on table 13 corresponds to GO; "Fair" and "Poor" corresponds to SLOW GO; and "Blocked" corresponds to NO GO.

b. Make the Complex Overlay neat (redraw if necessary), making sure that areas less than  $\frac{1}{4}$  inch in the least dimension are combined with another category. Match all four sides with adjoining CCM sheets, and add the legend and marginal information. Edit the finished manuscript to ensure that it is completed and ready for drafting or distribution.

| <del></del>                                           |       |      | Vet   | nicle |       |        |
|-------------------------------------------------------|-------|------|-------|-------|-------|--------|
|                                                       | XM-1  | M-60 | M-113 | M-35  | T-62  | T-72   |
| Gradability (%)                                       | 68.7  | 60   | 60    | 64    | 62.5  | (62.5) |
| Max. Road Speed (kph)                                 | 71    | 48   | 48    | 56    | 50    | (60)   |
| Width (m)                                             | 3.65  | 3.63 | 2.69  | 2.43  | 3.37  | 3.38   |
| Override Diameter (m) (at Breast Height)              | 0.25  | 0.15 | 0.1   | .06   |       | (0.18) |
| Vehicle Cone Index,<br>1 Pass (VCI,)                  | 24    | 25   | 20    | 30    | 23    | 45     |
| Vehicle Cone Index,<br>50 Passes (VCI <sub>50</sub> ) | 56    | 70   | 47    | 69    | 68    | (60)   |
| Max Fording Depth,<br>w/o Snorkel (m)                 | 1.22  | 1.22 | Swims | 76    | 1.40  | (1.40) |
| Max. Fording Depth,<br>w/Snorkel (m)                  | 2.34  | 2.44 | Swims |       | 5.00  | (5.50) |
| Max. Stream Velocity Vehicle<br>Can Cross (m/s)       | (3.5) | 3.4  | 1.8   | (1.0) | (3.4) | (3.4)  |
| Vehicle Approach Angle (°)                            | 22.5  | 43   | 70    | 48    |       | (32.5) |
| Max. Height, Vert. Obstacle (m)                       | 1.24  | .91  | .61   | .35   | .80   | (1.00) |
| Ditch Crossing Capability (m)                         | 2.77  | 2.59 | 1.68  | .55   | 2.85  | (2.80) |

() = Estimated

Table 9. Vehicle Performance Characteristics

| MAP  | SLOPE | х              | -M1   | ٨    | 1-60  | 7    | -62   | т              | -72   |
|------|-------|----------------|-------|------|-------|------|-------|----------------|-------|
| UNIT | (%)   | S <sub>1</sub> | NO GO | St   | NO GO | Sı   | NO GO | S <sub>1</sub> | NO GO |
| Α    | 0-3   | 67.9           |       | 45.6 |       | 47.6 |       | 57.1           |       |
| В    | 3-10  | 60.7           |       | 40.0 |       | 42.0 |       | 50.4           |       |
| С    | 10-30 | 40.0           |       | 24.0 |       | 26.0 |       | 31.2           |       |
| D    | 30-45 | 24.5           |       | 12.0 |       | 14.0 |       | 16.8           |       |
| E    | 45-60 | 9.0            |       | 0    | ×     | 2.0  |       | 2.4            |       |
| F    | >60   | 0              | ×     | 0    | х     | 0    | х     | 0              | х     |

Table 10. Precalculated S<sub>1</sub> for Selected Vehicles (kph)

| USCS Symbol | RCI<br>Dry Season | RCI<br>Wet Season |  |  |
|-------------|-------------------|-------------------|--|--|
| GW          | N/A               | N/A               |  |  |
| GP          | N/A               | N/A               |  |  |
| GM          | 100 <sup>+</sup>  | 72                |  |  |
| GC          | 100+              | 90                |  |  |
| GM-GC       | 100 <sup>+</sup>  | 81                |  |  |
| SW          | N/A               | N/A               |  |  |
| SP          | N/A               | N/A               |  |  |
| SM          | 100 <sup>+</sup>  | 82                |  |  |
| SC          | 100 <sup>+</sup>  | 82                |  |  |
| SM-SC       | 100+              | 82                |  |  |
| ML          | 100+              | 55                |  |  |
| CL          | 100 <sup>+</sup>  | 46                |  |  |
| ML-CL       | 100+              | 51                |  |  |
| OL          | 46                | 46                |  |  |
| МН          | 100 <sup>+</sup>  | 83                |  |  |
| СН          | 100 <sup>+</sup>  | 90                |  |  |
| ОН          | 40                | 40                |  |  |
| Pt          | 35                | 35                |  |  |

Table 11. Approximate RCI Values for Wet and Dry Seasons
(To be used ONLY for the cross-country movement calculations required in this guide when no other RCI values are available.)

# Table 12. GLOSSARY OF SYMBOLS AND TERMS

a < b a is less than b
a > b a is greater than b
a < b a is less than or equal to b
a ≥ b a is greater than or equal to b
(a)(b) a x b, a multiplied by b</pre>

# QUALITATIVE THRESHOLDS FOR CCM

| (A) BEOVOSE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SURFACE CONFIGURATION                                                                                                                                                                                                                                              | VEGETATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | THOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SOIL SURFACE MATERIAL | ACTORS<br>I MATERIAL |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ī      | MICHORETHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ELEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CUATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Į.                                                                                                                           |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| COMDITION   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                            | WHEELED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                      | TRACK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              |
|             | WHEELED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TRACK                                                                                                                                                                                                                                                              | WHEELED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRACK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Λ                                                                                                          | П                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NJZON                 | ORY                  | iệ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FROZEN | WHERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WHEELED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TRACK                                                                                                                        |
| GHO)        | Monthan & Angel<br>House<br>Baserion<br>Class and works<br>School & Works<br>School & Works<br>Class and<br>Class and | Manual Andreas                                                                                                                                                                                                                                                     | oreal<br>oreal<br>suppression of the control of the contr | Secondary Earl<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone<br>Maryone | Duffy, Accon                                                                                               | Transpared                                                                                                                                                                                                                                                                                                                                                                                                                         | * O.                  | Nove                 | Museas<br>Museas<br>PassiMick-Pf<br>Moeiny Class E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Nove   | Bounds to dis<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Companyanti<br>Com | Boundary and Bound | Software A trial Softwa | Mario Anna Mario Anna Anna Anna Anna Anna Anna Anna Ann                                                                      |
| 5 2         | Committee Dear<br>Vocant Dear<br>Duran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Coe hills and Rolling Plans Plans Plans Plans Ands Seers Ander Annes Moranes Plans Plans Facts                                                                                                                                                                     | 2 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Purnay Esergeen<br>Forest<br>Scrub<br>Orchada<br>Orchada<br>Orchada<br>Man Forest<br>Man Forest<br>Han Forest<br>Underbust<br>Open Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | None                                                                                                       | Described of the property of t                                                                                                                                                                                                                                                                                                                                                                                                                        | Anna                  | purs soud            | Mapurit Class C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mone   | Figure Protect Ground Ground Little Exponent Flooring Little Exponent Flooring Tuli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Frequent Ditches<br>Sushings<br>Bubble Taus<br>Scree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Carrie Fences Suburban Devogramen Type A oid village center cente | Curr & Filip Stone Faces Stone Faces Stone Faces Diversion on Diversion on Control of Control Control of Control Orders Dock |
| į           | Garth Rointghans<br>Cracia Prans &<br>Parasus<br>Coasta Paros<br>Kayl Paros<br>Anusa Fars<br>Ourseth Paros                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                    | Savana<br>righ Grass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Spring<br>High Gress<br>Vireyalds<br>Ross Crops<br>Brish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | None                                                                                                       | Sand morganic clavs of morphysicity an morphysicity as clavs CH CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nove                  | None                 | Sand<br>Inorganic clay of<br>ings pasticity<br>ings pasticity<br>Mithury Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | None   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Freiny Plowed<br>Fround<br>Stoney Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Type C dapened family no.sang Type E industrial transportation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type C deprined family booking                                                                                               |
| 90000       | Producting 8 king Producting 8 king Producting 8 king Producting P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Processing & Eagl<br>Processing Plans<br>(Auror Plans)<br>(Auror Plans) | Lon Green                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Con Grass  Mestor  Parker  Parker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | at in hall oose sand<br>Course governed<br>Components<br>and & Green<br>Algorith Class A<br>(198 GD 'Nr SP | Contrary grand<br>Contrary grand<br>Constraints<br>and Sunser<br>Winners Case A<br>Winners Case | 4                     | All for I codes sand | Come of save of come of save of come of save o | ž      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tree C material tree C material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | area area area area area area area area                                                                                      |

Maria Al Children Continues as a second

Table 14. Calculator Program Flow Chart

# V. Appendix Forms

# SOIL FACTOR TABLE

|              | DRY             |          |              | WET             |       |
|--------------|-----------------|----------|--------------|-----------------|-------|
| RCI          | F <sub>4D</sub> | No-Go    | RCI          | F <sub>4W</sub> | No-Go |
|              |                 |          |              |                 |       |
| <del> </del> | ļ               | <u> </u> | <del> </del> |                 |       |
|              |                 |          |              |                 |       |
|              |                 |          |              |                 |       |
|              |                 |          |              |                 |       |
|              |                 |          |              |                 |       |
|              |                 |          |              |                 |       |
|              |                 |          |              |                 |       |
|              |                 |          |              |                 |       |
|              |                 |          |              |                 |       |
|              |                 | 1        |              |                 |       |
|              |                 |          |              |                 |       |
|              |                 |          |              |                 |       |
|              | RCI             |          | <del></del>  |                 |       |

| S        |
|----------|
| w        |
| ~        |
| 5        |
| Ξ        |
| EAT      |
| _        |
| FEA      |
| _        |
| ш        |
| O<br>E   |
|          |
| ⋖        |
| DRAIN    |
| _        |
| ⋖        |
| 24       |
| ۵        |
|          |
| ¥        |
| 0<br>F   |
|          |
| S        |
| ANALYSIS |
| S        |
| >        |
| _        |
| 4        |
| 7        |
| ANA      |
| •        |
| -        |
| =        |
| Z        |
| ш        |
| MEN      |
| _        |
| 7        |
| 7        |
| OVEMENT  |

17. 17. 17.

|    | -   | <b>6</b> € | MOVEMENT                    | ENT                   |             | ALI        | ANALYSIS              | 0                          |               | DRAINAG | A G          | E FI                  | FEATU | IRES  | 10                 |       |
|----|-----|------------|-----------------------------|-----------------------|-------------|------------|-----------------------|----------------------------|---------------|---------|--------------|-----------------------|-------|-------|--------------------|-------|
| 1  | 2   | 3          | 48                          | 46                    | 4c          | 5a         | qç                    | gg                         | ą             | ÿ       | 7.8          | 1.6                   | 22    | 8a    | <b>8</b>           | శ     |
|    |     |            | **                          | WATER DEPTH           | н           | ₽¥         | NK HEIG               | BANK HEIGHT AND BANK SLOPE | ANK SLC       | J-J-E   | WAT          | WATER VELOCITY        | CITY  | BOTTC | BOTTOM CONDITIONS  | TIONS |
| ōð | SEG | SEASON     | VEH<br>FORD<br>DEPTH<br>(m) | WATER<br>DEPTH<br>(m) | GO<br>NO GO | VEH<br>(B) | BANK<br>HEIGHT<br>(m) | VEH<br>A A                 | BANK<br>SLOPE | 00 ON   | VEH<br>(mps) | WATER<br>VEL<br>(mps) | 05 ON | VCI   | BOTT<br>RC!<br>WET | 09 QN |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            | I                           |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |
|    |     |            |                             |                       |             |            |                       |                            |               |         |              |                       |       |       |                    |       |

# SPEED PREDICTION TABULATION SHEET #1

|          |                                                  |                                              |                                                  |            |            |             |          |            | 500          | 105 0                                            |                                                  |              |              |                                                  |                       |                                                  |
|----------|--------------------------------------------------|----------------------------------------------|--------------------------------------------------|------------|------------|-------------|----------|------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------|--------------------------------------------------|-----------------------|--------------------------------------------------|
|          | SLO                                              | PE                                           | VEG                                              | FT         | TIC        | N           | SURF     | AC         | E            | 0 7                                              | Sí                                               | 211          |              |                                                  | CCM - Dry             | CCM - Wet                                        |
| Area     | Map<br>Unit                                      | <u> </u>                                     | Man                                              | Ē          | F          | <u> </u>    | Man      | HNE        | SS           | Man                                              | F                                                | F            | s            | S                                                | CCM - Dry<br>Map Unit | Map Unit                                         |
| L_1      | Unit                                             | <u>,                                    </u> | Unit                                             | <u>'</u> ' | ' 2        | 52          | Unit     | • 3        | ິງ           | Unit                                             | <b>4</b> D                                       | 4₩           | 40           | J <sub>4W</sub>                                  | Wap Oin               | Wap Olik                                         |
|          |                                                  |                                              |                                                  |            |            |             |          |            |              |                                                  |                                                  |              |              |                                                  |                       | <b>-</b>                                         |
| $\vdash$ |                                                  | Н                                            |                                                  | ┝          | ┝╌         | H           |          | -          | $\vdash$     | -                                                | -                                                | -            | М            | ┢┯                                               |                       | <del></del>                                      |
|          |                                                  | $\vdash$                                     |                                                  | -          | ┝          | <b>-</b>    |          | -          | ┝            |                                                  | -                                                | -            | ⊢            | -                                                |                       | <del></del>                                      |
| _        |                                                  |                                              |                                                  | L          | _          | <u> </u>    |          | L_         | _            |                                                  | _                                                |              | <u> </u>     | _                                                |                       |                                                  |
|          |                                                  |                                              |                                                  | L          | L          |             |          |            |              |                                                  | L.                                               |              |              |                                                  |                       | <u> </u>                                         |
| 11       |                                                  |                                              |                                                  |            |            |             |          |            |              |                                                  |                                                  |              |              |                                                  |                       | _                                                |
|          |                                                  |                                              |                                                  | Г          |            |             |          |            |              |                                                  |                                                  |              |              |                                                  |                       | 1                                                |
|          |                                                  |                                              |                                                  | Г          |            |             |          |            |              |                                                  |                                                  |              |              |                                                  |                       | 1                                                |
|          |                                                  |                                              | _                                                | Н          |            | $\vdash$    |          |            | <b>—</b>     |                                                  |                                                  | <del> </del> | Ι-           |                                                  |                       |                                                  |
| ┝╌┥      |                                                  | $\vdash$                                     | <b></b> -                                        | Н          | $\vdash$   | $\vdash$    |          |            | -            |                                                  | -                                                | -            | $\vdash$     | -                                                |                       |                                                  |
|          |                                                  |                                              | ├                                                | $\vdash$   | <b>-</b> - | <b> -</b> - |          | ┝┈         | <b>-</b>     | <del>                                     </del> |                                                  |              | <del> </del> | <del> </del>                                     | <u> </u>              | <del> </del>                                     |
|          |                                                  |                                              |                                                  | _          | <u> </u>   | L.          |          | lacksquare |              | <u> </u>                                         | L_                                               | _            | L.           | L                                                |                       |                                                  |
| لــــا   |                                                  |                                              |                                                  | لـــا      | L          |             |          |            | L            |                                                  |                                                  |              | L            | L_                                               |                       |                                                  |
|          |                                                  |                                              |                                                  |            |            |             |          | L          |              | L                                                | L                                                |              |              |                                                  |                       |                                                  |
|          |                                                  |                                              |                                                  |            |            |             |          |            |              |                                                  |                                                  | Г            |              |                                                  |                       |                                                  |
|          |                                                  |                                              |                                                  |            |            |             |          |            |              |                                                  |                                                  |              |              |                                                  |                       |                                                  |
|          |                                                  | _                                            |                                                  |            |            | Ι-          |          | Ι-         | Н            |                                                  |                                                  |              | ┢            |                                                  |                       |                                                  |
| <b></b>  |                                                  | -                                            | <del>                                     </del> | ┝          | <b>-</b>   | ┝╌          |          | ┝          | $\vdash$     | <del> </del>                                     | ┝                                                | ┝╌           | ┝            | ┝╌                                               |                       | <del></del>                                      |
| <b> </b> | <del>                                     </del> | -                                            | ├                                                | -          | -          | ├           | ļ        | ⊢          | ┝┈           | ├                                                | ├                                                | ┝            | ┞─           | ├─                                               | <del> </del> -        | <b></b>                                          |
| -        |                                                  | Щ                                            | <b></b>                                          | <b>!</b>   | <b> </b>   | <u> </u>    |          | <u> </u>   | ļ.,          | <u> </u>                                         | L-                                               | <u> </u>     | ├-           | ├-                                               | <b></b>               |                                                  |
|          |                                                  |                                              |                                                  | L_         | L          |             |          |            |              |                                                  | L                                                |              | L            | <u> </u>                                         |                       |                                                  |
|          |                                                  |                                              |                                                  |            |            |             |          |            |              |                                                  |                                                  |              |              |                                                  |                       |                                                  |
|          |                                                  |                                              |                                                  |            | 1          |             |          |            |              | 1                                                |                                                  | 1            | l            | Ι.                                               |                       |                                                  |
|          |                                                  |                                              |                                                  | Г          |            |             |          | Γ          | П            |                                                  |                                                  |              |              |                                                  |                       |                                                  |
|          |                                                  |                                              |                                                  | ┢          |            |             |          |            | 1            |                                                  | $\vdash$                                         | Г            |              |                                                  |                       |                                                  |
|          |                                                  |                                              |                                                  | T          | М          |             | <b> </b> | Ι-         | t-           |                                                  | T                                                | $\vdash$     |              | 1                                                |                       | <b></b>                                          |
| <b></b>  | $\vdash \vdash \vdash$                           | -                                            |                                                  | ├-         | -          | ┝           |          | ├-         | $\vdash$     | <del></del>                                      | ┢╌                                               | <del> </del> | -            | <del>                                     </del> |                       |                                                  |
|          | Ь—                                               | -                                            |                                                  | -          | -          | ⊢           |          |            | -            | ├                                                | <del>                                     </del> | $\vdash$     | }-           | ╁                                                | <del> </del>          | <del> </del>                                     |
| <b>—</b> | <b></b> _                                        |                                              |                                                  | <b>L</b>   | <u> </u>   | <u> </u>    |          | ├          | ↓_           | <b> </b>                                         | <b>—</b>                                         | <del> </del> | <u> </u>     | ↓_                                               |                       | <b> </b>                                         |
| <u></u>  |                                                  | L                                            | <u> </u>                                         | <u></u>    | <u>L</u>   | L           | L        | L.         | L            | <b> </b>                                         | <u> </u>                                         | L            | L            | <b>L</b>                                         |                       | L                                                |
|          |                                                  |                                              |                                                  | L          | L          | L           |          | L          |              |                                                  | L                                                | L            | L            | L                                                |                       | <u> </u>                                         |
|          |                                                  |                                              |                                                  |            |            |             |          | L          |              |                                                  |                                                  |              |              |                                                  |                       |                                                  |
|          |                                                  |                                              |                                                  |            |            | Г           |          |            |              |                                                  |                                                  |              |              |                                                  |                       |                                                  |
|          | $\vdash \lnot \lnot$                             | Н                                            |                                                  |            | $\vdash$   | М           |          |            | ┰            |                                                  | <del>                                     </del> | $\vdash$     | $\vdash$     | T                                                |                       | <del>                                     </del> |
| <b>-</b> |                                                  | _                                            | <del></del>                                      | ┝╴         |            | -           |          | ├-         | $\vdash$     | <del> </del>                                     | <del>                                     </del> | $\vdash$     | ┢            | 1-                                               | <del></del>           | <del> </del>                                     |
| -        |                                                  | ۲.                                           |                                                  | ┝          | ├─         | ┝           |          | ├          | -            |                                                  | $\vdash$                                         | $\vdash$     | ├            | ╀                                                | <del> </del> -        | <del> </del>                                     |
| <b></b>  |                                                  | _                                            | <b></b>                                          | ┞          | <b> </b>   | <u> </u>    |          | ├          | ↓            | <b></b>                                          | <b> </b>                                         | ┝            | ├            | <b> </b>                                         |                       | <b> </b>                                         |
| <u></u>  |                                                  | L_                                           |                                                  | _          | <u></u>    | L           | L        | L          | $oxed{\Box}$ |                                                  | _                                                | L            | L            | <b>!</b>                                         |                       |                                                  |
|          |                                                  |                                              | L                                                |            |            | L           |          |            |              | <u> </u>                                         |                                                  | L            | L            |                                                  |                       |                                                  |
|          |                                                  |                                              |                                                  |            |            |             |          |            |              |                                                  |                                                  |              |              |                                                  |                       |                                                  |